题目传送门


题目描述

此时已是凌晨两点,刚刚做了$Codeforces$的小$A$掏出了英语试卷。英语作业其实不算多,一个小时刚好可以做完。然后是一个小时可与做完的数学作业,接下来是分别都是一个小时可以做完的化学,物理,语文……小$A$压力巨大。
    这时小$A$碰到了一道非常恶心的数学题,给定了一个长度为$n$的数列和若干个询问,每个询问是关于数列的区间$[l,r]$(表示数列的第$1$个数到第$r$个数),首先你要统计该区间内大于等于$a$,小于等于$b$的书的个数,其次是所有大于等于$a$,小于等于$b$的,且在该区间中出现过的数值的个数。
    小$A$望着那数万的数据规模几乎绝望,只能向大神您求救,请您帮帮他吧。


输入格式

 第一行两个数$n,m$,接下来$n$个数(这些数都大于等于$1$小于等于$n$),表示给定数列。
 接下来$m$行,每行四个整数$l,r,a,b$:$l,r$表示询问的区间,$a,b$表示询问的数值的范围。


输出格式

 输出$m$行,分别对应每个询问,输出两个数,分别为在l到r这段区间中大小在$[a,b]$中的数的个数,以及大于等于$a$,小于等于$b$的,且在该区间中出现过的数值的个数(具体可以参考样例)。


样例

样例输入

3 4
1 2 2
1 2 1 3
1 2 1 1
1 3 1 3
2 3 2 3

样例输出

2 2
1 1
3 2
2 1


数据范围与提示

$n=100,000$,$m=1,000,000$


题解

为了防止你们数错0,我专门在百万位和十万位之间加了“,”。

但是$n$却只有$100,000$,那么我们可以考虑莫队,至于统计答案,分块就好了。

不过正解好像是用权值线段树或者是树状数组,但是分块常数较小,跑得不比线段书慢。


代码时刻

#include<bits/stdc++.h>
using namespace std;
struct rec
{
int l;
int r;
int a;
int b;
int id;
int p;
}q[1000001];
int n,m;
int t,tt;
int a[1000001];
int lx[1000001],rx[1000001];
int cnt[1000001],pos[1000001],k[1000001],change[1000001];
int ans1[1000001],ans2[1000001];
bool cmp(rec a,rec b){return a.p==b.p?a.r<b.r:a.p<b.p;}//莫队
void get_answer(int l,int r,int id)//分块找答案
{
if(pos[l]==pos[r])
{
for(int i=l;i<=r;i++)
{
ans1[id]+=cnt[i];
if(cnt[i])ans2[id]++;
}
return;
}
if(pos[l])
for(int i=l;i<=rx[pos[l]];i++)
{
ans1[id]+=cnt[i];
if(cnt[i])ans2[id]++;
}
if(pos[r])
for(int i=lx[pos[r]];i<=r;i++)
{
ans1[id]+=cnt[i];
if(cnt[i])ans2[id]++;
}
if(pos[l]&&pos[r])
for(int i=pos[l]+1;i<pos[r];i++){ans1[id]+=k[i];ans2[id]+=change[i];}
if(pos[l]&&!pos[r])
for(int i=pos[l]+1;i<=tt;i++){ans1[id]+=k[i];ans2[id]+=change[i];}
}
int main()
{
scanf("%d%d",&n,&m);
t=sqrt(n);
tt=n/t;
if(n%t)tt++;
for(int i=1;i<=tt;i++)
{
lx[i]=(i-1)*t+1;
rx[i]=i*t;
}
rx[tt]=n;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&q[i].l,&q[i].r,&q[i].a,&q[i].b);
q[i].id=i;
q[i].p=(q[i].l-1)/t+1;
pos[i]=(i-1)/t+1;
}
sort(q+1,q+m+1,cmp);
int l=1,r=0;
for(int i=1;i<=m;i++)
{
while(l<q[i].l)
{
cnt[a[l]]--;
k[pos[a[l]]]--;
if(!cnt[a[l]])change[pos[a[l]]]--;
l++;
}
while(l>q[i].l)
{
l--;
if(!cnt[a[l]])change[pos[a[l]]]++;
cnt[a[l]]++;
k[pos[a[l]]]++;
}
while(r<q[i].r)
{
r++;
if(!cnt[a[r]])change[pos[a[r]]]++;
cnt[a[r]]++;
k[pos[a[r]]]++;
}
while(r>q[i].r)
{
cnt[a[r]]--;
k[pos[a[r]]]--;
if(!cnt[a[r]])change[pos[a[r]]]--;
r--;
}
get_answer(q[i].a,q[i].b,q[i].id);
}
for(int i=1;i<=m;i++)
printf("%d %d\n",ans1[i],ans2[i]);
return 0;
}

rp++

[BZOJ3236]:[Ahoi2013]作业(莫队+分块)的更多相关文章

  1. BZOJ3236:[AHOI2013]作业(莫队,分块)

    Description Input Output Sample Input 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 Sample Output 2 2 1 ...

  2. bzoj3809 Gty的二逼妹子序列 & bzoj3236 [Ahoi2013]作业 莫队+分块

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3809 https://lydsy.com/JudgeOnline/problem.php?id ...

  3. [AHOI2013]作业 (莫队+分块)

    [AHOI2013]作业 (莫队+分块) 题面 给定了一个长度为n的数列和若干个询问,每个询问是关于数列的区间[l,r],首先你要统计该区间内大于等于a,小于等于b的数的个数,其次是所有大于等于a,小 ...

  4. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  5. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  6. bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)

    题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...

  7. 【bzoj3809/bzoj3236】Gty的二逼妹子序列/[Ahoi2013]作业 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805252.html bzoj3809 题目描述 Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了 ...

  8. 【BZOJ3809/3236】Gty的二逼妹子序列 [Ahoi2013]作业 莫队算法+分块

    [BZOJ3809]Gty的二逼妹子序列 Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b ...

  9. COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)

    题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...

  10. BZOJ 3236: [Ahoi2013]作业( 莫队 + BIT )

    莫队..用两个树状数组计算.时间复杂度应该是O(N1.5logN). 估计我是写残了...跑得很慢... ----------------------------------------------- ...

随机推荐

  1. PostgreSQL设计之初的大量论文

    引自:https://www.docs4dev.com/docs/zh/postgre-sql/11.2/reference/biblio.html#STON86 该网站是一个PostgreSQL手册 ...

  2. Java - Java Mail邮件开发(3)spring +Java Mail + Velocity

    1.spring + Java Mail + Velocity 项目结构: 注意:用户包中引入各包的顺序问题.如velocity-2.1. beans.xml <?xml version=&qu ...

  3. GraphQL入门有这一篇就足够了

    GraphQL入门有这一篇就足够了:https://blog.csdn.net/qq_41882147/article/details/82966783 版权声明:本文为博主原创文章,遵循 CC 4. ...

  4. Centos7 yum安装LNMP

    1.Centos7系统库中默认是没有nginx的rpn包的,所以我们需要先更新下rpm依赖库 (1):使用yum安装nginx,安装nginx库 rpm -Uvh http://nginx.org/p ...

  5. [LeetCode] 113. 路径总和 II

    题目链接 : https://leetcode-cn.com/problems/path-sum-ii/ 题目描述: 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径 ...

  6. bootstrap使用总结(导航在carousel居中之上)

    在导航中想实现这样 carousel 在底部,导航条在上面中间,div结构为以下 <div class="navbar-wrapper"style="width: ...

  7. 大div中,三个小div水平居中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Linux系统性能测试工具(六)——磁盘io性能工具之dd

    本文介绍关于Linux系统(适用于centos/ubuntu等)的磁盘io性能测试工具-dd.磁盘io性能测试工具包括: fio: dd

  9. 数据结构课后练习题(练习一)1007 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  10. 2019 Multi-University Training Contest 4 1008K-th Closest Distance(二分+主席树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6621 题目大意:给一个数组,每次给 l ,r, p, k,问区间 [l, r] 的数与 p 的绝对值的 ...