1:神经网络算法简介

2:Backpropagation算法详细介绍

3:非线性转化方程举例

4:自己实现神经网络算法NeuralNetwork

5:基于NeuralNetwork的XOR实例

6:基于NeuralNetwork的手写数字识别实例

7:scikit-learn中BernoulliRBM使用实例

8:scikit-learn中的手写数字识别实例

一:神经网络算法简介

1:背景

以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation

2:多层向前神经网络(Multilayer  Feed-Forward Neural Network)

多层向前神经网络组成部分

输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)

   每层由单元(units)组成
   输入层(input layer)是由训练集的实例特征向量传入
   经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入
   隐藏层的个数是任意的,输出层和输入层只有一个
   每个单元(unit)也可以被称作神经结点,根据生物学来源定义
   上图称为2层的神经网络(输入层不算)
   一层中加权的求和,然后根据非线性的方程转化输出
   作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers)和足够大的训练集,可以模拟出任何方程
 

3:设计神经网络结构

    3.1使用神经网络训练数据之前,必须确定神经网络层数,以及每层单元个数
    3.2特征向量在被传入输入层时通常被先标准化(normalize)和0和1之间(为了加强学习过程)
    3.3离散型变量可以被编码成每一个输入单元对应一个特征可能赋的值
        比如:特征值A可能取三个值(a0,a1,a2),可以使用三个输入单元来代表A
                    如果A=a0,那么代表a0的单元值就取1,其他取0
                    如果A=a1,那么代表a1的单元值就取1,其他取0,以此类推
    3.4神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
         3.4.1对于分类问题,如果是2类,可以用一个输入单元表示(0和1分别代表2类)
                                         如果多于两类,每一个类别用一个输出单元表示
                所以输入层的单元数量通常等于类别的数量 
        3.4.2没有明确的规则来设计最好有多少个隐藏层
               3.4.2.1根据实验测试和误差,以及准确度来实验并改进

4:算法验证——交叉验证法(Cross- Validation)

 

解读: 有一组输入集A,B,可以分成三组,第一次以第一组为训练集,求出一个准确度,第二次以第二组作为训练集,求出一个准确度,求出准确度,第三次以第三组作为训练集,求出一个准确度,然后对三个准确度求平均值

二:Backpropagation算法详细介绍

1:通过迭代性来处理训练集中的实例

2:输入层输入数

经过权重计算得到第一层的数据,第一层的数据作为第二层的输入,再次经过权重计算得到结果,结果和真实值之间是存在误差的,然后根据误差,反向的更新每两个连接之间的权重

3:算法详细介绍

输入:D : 数据集,| 学习率(learning rate),一个多层前向神经网络

    输出:一个训练好的神经网络(a trained neural network)
    3.1初始化权重(weights)和偏向(bias):随机初始化在-1到1之间,或者-0.5到0.5之间,每个单元有一个偏向
    3.2对于每一个训练实例X,执行以下步骤:
         3.2.1:由输入层向前传送,输入->输出对应的计算为:
                              
                                         
                   计算得到一个数据,经过f 函数转化作为下一层的输入,f函数为:
          3.2.2:根据误差(error)反向传送
                     对于输出层(误差计算):  Tj:真实值,Qj表示预测值
 
                     对于隐藏层(误差计算):  Errk 表示前一层的误差, Wjk表示前一层与当前点的连接权重
                       
                     权重更新:  l:指学习比率(变化率),手工指定,优化方法是,随着数据的迭代逐渐减小
 
                     偏向更新:  l:同上
       3.3:终止条件
           3.3.1权重的更新低于某个阀值
           3.3.2预测的错误率低于某个阀值
           3.3.3达到预设一定的循环次数

4:结合实例讲解算法

0.9对用的是L,学习率

测试代码如下:

1.NeutralNetwork.py文件代码

#coding:utf-8

import numpy as np

#定义双曲函数和他们的导数
def tanh(x):
return np.tanh(x) def tanh_deriv(x):
return 1.0 - np.tanh(x)**2 def logistic(x):
return 1/(1 + np.exp(-x)) def logistic_derivative(x):
return logistic(x)*(1-logistic(x)) #定义NeuralNetwork 神经网络算法
class NeuralNetwork:
#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元
def __init__(self, layers, activation='tanh'):
"""
:param layers: A list containing the number of units in each layer.
Should be at least two values
:param activation: The activation function to be used. Can be
"logistic" or "tanh"
"""
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv self.weights = []
#循环从1开始,相当于以第二层为基准,进行权重的初始化
for i in range(1, len(layers) - 1):
#对当前神经节点的前驱赋值
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
#对当前神经节点的后继赋值
self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25) #训练函数 ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,
# epochs,表示抽样的方法对神经网络进行更新的最大次数
def fit(self, X, y, learning_rate=0.2, epochs=10000):
X = np.atleast_2d(X) #确定X至少是二维的数据
temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y) #把list转换成array的形式 for k in range(epochs):
#随机选取一行,对神经网络进行更新
i = np.random.randint(X.shape[0])
a = [X[i]] #完成所有正向的更新
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l], self.weights[l])))
#
error = y[i] - a[-1]
deltas = [error * self.activation_deriv(a[-1])] #开始反向计算误差,更新权重
for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta) #预测函数
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a

2、测试代码

#coding:utf-8
'''
#基于NeuralNetwork的XOR(异或)示例
import numpy as np
from NeuralNetwork import NeuralNetwork nn = NeuralNetwork([2,2,1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
print(i,nn.predict(i))
'''
'''
#基于NeuralNetwork的手写数字识别示例
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix,classification_report
from sklearn.preprocessing import LabelBinarizer
from sklearn.cross_validation import train_test_split
from NeuralNetwork import NeuralNetwork digits = load_digits()
X = digits.data
y = digits.target
X -= X.min()
X /= X.max() nn =NeuralNetwork([64,100,10],'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print "start fitting"
nn.fit(X_train,labels_train,epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
o = nn.predict(X_test[i])
predictions.append(np.argmax(o))
print confusion_matrix(y_test, predictions)
print classification_report(y_test, predictions)
''' #scikit-learn中的手写数字识别实例
import numpy as np
import matplotlib.pyplot as plt from scipy.ndimage import convolve
from sklearn import linear_model, datasets, metrics
from sklearn.cross_validation import train_test_split
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline ###############################################################################
# Setting up def nudge_dataset(X, Y): direction_vectors = [
[[0, 1, 0],
[0, 0, 0],
[0, 0, 0]], [[0, 0, 0],
[1, 0, 0],
[0, 0, 0]], [[0, 0, 0],
[0, 0, 1],
[0, 0, 0]], [[0, 0, 0],
[0, 0, 0],
[0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant',
weights=w).ravel()
X = np.concatenate([X] +
[np.apply_along_axis(shift, 1, X, vector)
for vector in direction_vectors])
Y = np.concatenate([Y for _ in range(5)], axis=0)
return X, Y # Load Data
digits = datasets.load_digits()
X = np.asarray(digits.data, 'float32')
X, Y = nudge_dataset(X, digits.target)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.2,
random_state=0) # Models we will use
logistic = linear_model.LogisticRegression()
rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ###############################################################################
# Training # Hyper-parameters. These were set by cross-validation,
# using a GridSearchCV. Here we are not performing cross-validation to
# save time.
rbm.learning_rate = 0.06
rbm.n_iter = 20
# More components tend to give better prediction performance, but larger
# fitting time
rbm.n_components = 100
logistic.C = 6000.0 # Training RBM-Logistic Pipeline
classifier.fit(X_train, Y_train) # Training Logistic regression
logistic_classifier = linear_model.LogisticRegression(C=100.0)
logistic_classifier.fit(X_train, Y_train) ###############################################################################
# Evaluation print()
print("Logistic regression using RBM features:\n%s\n" % (
metrics.classification_report(
Y_test,
classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % (
metrics.classification_report(
Y_test,
logistic_classifier.predict(X_test)))) ###############################################################################
# Plotting plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(rbm.components_):
plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,
interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.suptitle('100 components extracted by RBM', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show() '''
from sklearn.neural_network import BernoulliRBM
X = [[0,0],[1,1]]
y = [0,1]
clf = BernoulliRBM().fit(X,y)
print

测试结果如下:

使用Python scikit-learn 库实现神经网络算法的更多相关文章

  1. python复杂网络库networkx:算法

    http://blog.csdn.net/pipisorry/article/details/54020333 Networks算法Algorithms 最短路径Shortest Paths shor ...

  2. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. day-9 sklearn库和python自带库实现最近邻KNN算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  5. Python实现神经网络算法识别手写数字集

    最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...

  6. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  7. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  8. python 各种开源库

    测试开发 来源:https://www.jianshu.com/p/ea6f7fb69501 Web UI测试自动化 splinter - web UI测试工具,基于selnium封装. 链接 sel ...

  9. Python常用的库简单介绍一下

    Python常用的库简单介绍一下fuzzywuzzy ,字符串模糊匹配. esmre ,正则表达式的加速器. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable ...

随机推荐

  1. nginx软件的编译安装步骤

    1.1 检查软件安装的系统环境 [root@web02 conf]# cat /etc/redhat-release CentOS release 6.8 (Final) [root@web02 co ...

  2. Oracle(四):锁

    v$lock:视图列出当前系统持有的或正在申请的所有锁的情况 v$locked_object:视图列出当前系统中哪些对象正被锁定 1).查询当前数据库锁的情况,以及导致锁的sql语句: Select ...

  3. 170518、FastDFS_配置文件详解

    http://bbs.chinaunix.net/thread-1941456-1-1.html 首先是 tracker.conf # is this config file disabled # f ...

  4. windoes下一台电脑是无线/USB上网,如何将另一台电脑通过一拖一上网

    https://wenku.baidu.com/view/0c95830bbb68a98271fefa6e.html 一台电脑是无线上网,如何将另一台电脑通过一拖一上网有时候,在没有路由器的情况下,只 ...

  5. (转) 史上最简单的 SpringCloud 教程 | 第一篇: 服务的注册与发现(Eureka)

    一.spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选.分布式会话等等.它运 ...

  6. marathon-lb-什么是服务发现?(转)

    摘要: 将容器应用部署到集群时,其服务地址,即IP和端口, 是由集群系统动态分配的.那么,当我们需要访问这个服务时,如何确定它的地址呢?这时,就需要服务发现(Service Discovery)了.本 ...

  7. ZOHO 免费小型企业邮箱和个人邮箱

    Zoho Mail 提供免费小型企业邮箱注册.精简版只能添加一个域到您的机构帐号,最多允许10用户.如果您想添加多个域,您可以升级到标准版.10用户免费,5 GB /每用户,5 GB (共享). 除了 ...

  8. The same month as the adidas NMD Singapore is releasing

    Earlier this December 2017, the inaugural adidas NMD Singapore silhouette released in the first colo ...

  9. 1.1 Getting Started-Core Concepts

    一.Templates      使用Handlebars模板语言来描述程序的用户接口.每一个模板都有model的支持,如果model改变template就会自动更新. Expressions: li ...

  10. Scrapy:学习笔记(2)——Scrapy项目

    Scrapy:学习笔记(2)——Scrapy项目 1.创建项目 创建一个Scrapy项目,并将其命名为“demo” scrapy startproject demo cd demo 稍等片刻后,Scr ...