行列式(二):余子式&代数余子式
目录
\(\Delta\)以下内容主要为《线性代数》的学习笔记
按行列展开
一般来说,低阶行列式的计算比高阶行列式的计算要简单得多,因此考虑用低阶行列式来表示高阶行列式。为此,我们引入余子式和代数余子式的概念。
相当于对行列式进行降阶处理以方便运算
定义
余子式:
在\(n\)阶行列式中,把\((i, j)\)元\(a_{ij}\)所在的第\(i\)行和第\(j\)列划去后(相当于用1代替),留下来的\(n - 1\)阶行列式叫做\((i, j)\)元的\(a_{ij}\)的余子式,记做\(M_{ij}\);
代数余子式:
记:
\[A_{ij} = (-1)^{i + j}M_{ij}\]
则把\(A_{ij}\)叫做\((i, j)\)元\(a_{ij}\)的代数余子式。
引理
一个\(n\)阶行列式,如果其中第\(i\)行所有元素除\((i, j)\)元\(a_{ij}\)外都为零,那么这行列式等于\(a_{ij}\)与它的代数余子式的乘积,即:
\[D = A_{ij}\].
定理2
行列式按行(列)展开法则:行列式等于它任意行(列)的各元素与其对应的代数余子式乘积之和,即:
\[ D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}\]
或
\[D = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}\]
推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即:
\[a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} = 0,\quad i \ne j\]
或
\[a_{1i}A_{1i} + a_{2i}A_{2i} + ... + a_{ni}A_{ni} = 0,\quad i \ne j\]
综合定理2及其推论,可以得到有关代数余子式的重要性质:
\[\sum_{k = 1}^{n}a_{ki}A_{ki} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]
或
\[\sum_{k = 1}^{n}a_{ik}A_{ik} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]
行列式(二):余子式&代数余子式的更多相关文章
- 矩阵&行列式
# 代数 排列 对换,对于一个排列操作,对于一个偶排列一次对换之后变为奇排列 反之变为偶排列 行列式 N阶行列式室友N^2个数aij(i,j = 1,2,3,...n) 行列式的数=\(\sum_ { ...
- 行列式计算(C#)
最近几天学习高等代数老师说要写个程序算行列式的结果,闲来无事就简单写了一下. 不多说了,上代码 using System; using System.Collections.Generic; usin ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 【learning】矩阵树定理
问题描述 给你一个图(有向无向都ok),求这个图的生成树个数 一些概念 度数矩阵:\(a[i][i]=degree[i]\),其他等于\(0\) 入度矩阵:\(a[i][i]=in\_degree[i ...
- multivariate_normal 多元正态分布
多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度 ...
- 标准方程法_岭回归_LASSO算法_弹性网
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
- MIT线性代数:19.行列式和代数余子式
- 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估
进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...
- c++实现矩阵类矩阵行列式,伴随矩阵,逆矩阵
//Matrix ver1.0 //只支持矩阵内部(方阵)的运算 #include<iostream> #include<math.h> using namespace std ...
随机推荐
- python3工作环境部署+spyder3+jupyter notebook
1.python3安装 1)官网去下载python3.7版本,双击安装,只要注意勾选写到PATH就行,其它直接NEXT. 2)安装完成,CMD键入 python 回车,跳出python界面就是成功. ...
- moment.js使用方法总结
Moment.js是一个轻量级的JavaScript时间库,它方便了日常开发中对时间的操作,提高了开发效率.日常开发中,通常会对时间进行下面这几个操作:比如获取时间,设置时间,格式化时间,比较时间等等 ...
- Egret入门(三)--创建HelloWorld项目(4.0-使用Egret Wing)
准备 编辑器: Egret Wing3(4.0.3) 需要下载安装 语言: TepyScript(JS的超集,参考手册http://bbs.egret.com/thread-1441-1-1.html ...
- Boss直聘邮件通知小脚本
Boss 基于Python3的找工作利器--Boss直聘来消息邮件通知, 自动发送简历脚本,O(∩_∩)O~ 无聊写的,因为有时候觉得找工作心急如焚,想自动回复自动发简历啊有木有~~~ github地 ...
- 前端之JavaScript(二)
一.概述 本篇主要介绍JavaScript的BOM和DOM操作,在前端之JavaScript(一)中介绍了JavaScript基础知识 1.1.BOM和DOM BOM(Browser Object M ...
- 减少Java垃圾的产生,降低内存使用量
1.尽量少使用静态的变量,因为它会一直占用内存, 2.尽量少使用String字符串去做拼接,相加.因为String是定长的每次相加都会产生新的临时对象,生成垃圾对象,尽量使用StringBuffer, ...
- 238. [LeetCode] Product of Array Except Self
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- 对字符串进行base64加解密---基于python
本文介绍Python 2.7中的base64模块,该模块提供了基于rfc3548的Base16, 32, 64编解码的接口.官方文档,参考这里. 当前接口基于rfc3548的Base16/32/64编 ...
- Scrum立会报告+燃尽图(Beta阶段第二周第七次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2415 项目地址:https://coding.net/u/wuyy694 ...
- Python语言基础
一.Python简介 Python是跨平台动态语言 特点:优雅.明确.简单 适用:web网站和网络服务:系统工具和脚步:包装其他语言开发的模块 不适用:贴近硬件(首选C):移动开发:IOS/Andro ...