\(\Delta\)以下内容主要为《线性代数》的学习笔记

按行列展开

一般来说,低阶行列式的计算比高阶行列式的计算要简单得多,因此考虑用低阶行列式来表示高阶行列式。为此,我们引入余子式和代数余子式的概念。
相当于对行列式进行降阶处理以方便运算

定义

余子式:
在\(n\)阶行列式中,把\((i, j)\)元\(a_{ij}\)所在的第\(i\)行和第\(j\)列划去后(相当于用1代替),留下来的\(n - 1\)阶行列式叫做\((i, j)\)元的\(a_{ij}\)的余子式,记做\(M_{ij}\);

代数余子式:
记:
\[A_{ij} = (-1)^{i + j}M_{ij}\]
则把\(A_{ij}\)叫做\((i, j)\)元\(a_{ij}\)的代数余子式。

引理

一个\(n\)阶行列式,如果其中第\(i\)行所有元素除\((i, j)\)元\(a_{ij}\)外都为零,那么这行列式等于\(a_{ij}\)与它的代数余子式的乘积,即:
\[D = A_{ij}\].

定理2

行列式按行(列)展开法则:行列式等于它任意行(列)的各元素与其对应的代数余子式乘积之和,即:
\[ D = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}\]

\[D = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}\]
推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即:
\[a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} = 0,\quad i \ne j\]

\[a_{1i}A_{1i} + a_{2i}A_{2i} + ... + a_{ni}A_{ni} = 0,\quad i \ne j\]

综合定理2及其推论,可以得到有关代数余子式的重要性质:

\[\sum_{k = 1}^{n}a_{ki}A_{ki} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]

\[\sum_{k = 1}^{n}a_{ik}A_{ik} =
\begin{cases}
D, \quad i = j\\
0, \quad i \ne j
\end{cases}\]

行列式(二):余子式&代数余子式的更多相关文章

  1. 矩阵&行列式

    # 代数 排列 对换,对于一个排列操作,对于一个偶排列一次对换之后变为奇排列 反之变为偶排列 行列式 N阶行列式室友N^2个数aij(i,j = 1,2,3,...n) 行列式的数=\(\sum_ { ...

  2. 行列式计算(C#)

    最近几天学习高等代数老师说要写个程序算行列式的结果,闲来无事就简单写了一下. 不多说了,上代码 using System; using System.Collections.Generic; usin ...

  3. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  4. 【learning】矩阵树定理

    问题描述 给你一个图(有向无向都ok),求这个图的生成树个数 一些概念 度数矩阵:\(a[i][i]=degree[i]\),其他等于\(0\) 入度矩阵:\(a[i][i]=in\_degree[i ...

  5. multivariate_normal 多元正态分布

    多元正态分布 正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为 上式为 x 服从 k 元正态分布,x 为 k 维向量:|Σ| 代表协方差矩阵的行列式 二维正态分布概率密度 ...

  6. 标准方程法_岭回归_LASSO算法_弹性网

    程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...

  7. MIT线性代数:19.行列式和代数余子式

  8. 基于上三角变换或基于DFS的行(列)展开的n阶行列式求值算法分析及性能评估

    进入大一新学期,看完<线性代数>前几节后,笔者有了用计算机实现行列式运算的想法.这样做的目的,一是巩固自己对相关概念的理解,二是通过独立设计算法练手,三是希望通过图表直观地展现涉及的两种算 ...

  9. c++实现矩阵类矩阵行列式,伴随矩阵,逆矩阵

    //Matrix ver1.0 //只支持矩阵内部(方阵)的运算 #include<iostream> #include<math.h> using namespace std ...

随机推荐

  1. springboot+security+JWT实现单点登录

    本次整合实现的目标:1.SSO单点登录2.基于角色和spring security注解的权限控制. 整合过程如下: 1.使用maven构建项目,加入先关依赖,pom.xml如下: <?xml v ...

  2. dp合集 广场铺砖问题&&硬木地板

    dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...

  3. activeX 打包

    原文 http://www.docin.com/p-409284488.html CAB打包文档说明 文档目的 本文档的目的在于说明将ocx和dll以及相关的文件打包成一个CAB包,以便在网页下调用o ...

  4. 自己做的一个固定大小对象内存池,效率大概为原始的new/delete的2倍

    提升不高,不过好处是可以多次申请小对象,一次释放.(只适应于无动态申请资源的class) vs2012测试情况如下: // CHchFixLenMemPool.h #pragma once #ifnd ...

  5. 4星|《财经》2018年第15期:电动飞机、无人小飞机、AI无人机

    <财经>2018年第15期 总第532期 旬刊 本期主题是AI.有多篇国内AI行业的比较深入的调查报告,比较有意思的有:电动飞机.无人小飞机.AI无人机.欧盟通用数据保护条例.Amazon ...

  6. Delphi 中的 RectTracker - 原创

    本文算是副产品,正品是利用 FFmpeg 从任意视频中生成GIF片段的小程序,写完了就发. V2G 正品已出炉,虽然不大像样,但好歹是能用,请见:用 Delphi 7 实现基于 FFMS2 的视频转 ...

  7. python3【基础】-and和or的短路逻辑

    1. 表达式只有一个逻辑运算符 python中哪些对象会被当成False,哪些又是True呢? 基本数据类型中的None.任何数值类型中的0.空字符串"",空列表[],空元组()和 ...

  8. Planning The Expedition(暴力枚举+map迭代器)

    Description Natasha is planning an expedition to Mars for nn people. One of the important tasks is t ...

  9. 软工实践-Alpha 冲刺 (10/10)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 完成所有界面的链接,整理与测试 展示GitHub当日代码/ ...

  10. POJ 2063 Investment 滚动数组+完全背包

    题目链接: http://poj.org/problem?id=2063 题意: 你现在有现金m元,你要做n年的存款投资,给你k种投资方式,每种需要现金vi元,能获得xi元的理论,一年到期后你要利用拿 ...