题目链接

BZOJ3782

题解

我们把终点也加入障碍点中,将点排序,令\(f[i]\)表示从\((0,0)\)出发,不经过其它障碍,直接到达\((x_i,y_i)\)的方案数

首先我们有个大致的方案数\({x_i + y_i \choose x_i}\)

但是中途可能会经过一些其它障碍点,那么就减去

所以

\[f[i] = {x_i + y_i \choose x_i} - \sum\limits_{j = 1}^{i - 1} {x_i - x_j + y_i - y_j \choose x_i - x_j}f[j]
\]

由于坐标很大,又观察到一种模数不大,一种模数为合数,且最大质因子也不大

所以可以\(Lucas\)定理 + CRT合并

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 205,maxm = 1000005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL N,M,T,P;
struct point{LL x,y;}p[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
int pr[10],pi;
LL fac[5][maxm],fv[5][maxm],inv[5][maxm];
void sp(){
int x = P;
for (int i = 2; i * i <= x; i++)
if (x % i == 0){
pr[++pi] = i;
x /= i;
}
if (x - 1) pr[++pi] = x;
}
void init(){
for (int j = 1; j <= pi; j++){
fac[j][0] = fac[j][1] = fv[j][0] = fv[j][1] = inv[j][0] = inv[j][1] = 1;
int p = pr[j];
for (int i = 2; i < pr[j]; i++){
fac[j][i] = 1ll * fac[j][i - 1] * i % p;
inv[j][i] = 1ll * (p - p / i) * inv[j][p % i] % p;
fv[j][i] = 1ll * fv[j][i - 1] * inv[j][i] % p;
}
}
}
LL Lucas(LL n,LL m,int p){
if (m > n) return 0;
if (n < pr[p] && m < pr[p])
return 1ll * fac[p][n] * fv[p][m] % pr[p] * fv[p][n - m] % pr[p];
return 1ll * Lucas(n % pr[p],m % pr[p],p) * Lucas(n / pr[p],m / pr[p],p) % pr[p];
}
LL C(LL n,LL m){
if (m > n) return 0;
LL re = 0;
for (int i = 1; i <= pi; i++){
re = (re + 1ll * Lucas(n,m,i) * (P / pr[i]) % P * inv[i][P / pr[i] % pr[i]] % P) % P;
}
return re;
}
LL f[maxn];
int main(){
N = read(); M = read(); T = read(); P = read();
sp(); init(); //REP(i,pi) printf("%d ",pr[i]); puts("");
REP(i,T) p[i].x = read(),p[i].y = read();
++T;
p[T].x = N,p[T].y = M;
sort(p + 1,p + T + 1);
for (int i = 1; i <= T; i++){
f[i] = C(p[i].x + p[i].y,p[i].x);
for (int j = 1; j < i; j++)
if (p[j].x <= p[i].x && p[j].y <= p[i].y)
f[i] = (f[i] - 1ll * f[j] * C(p[i].x - p[j].x + p[i].y - p[j].y,p[i].x - p[j].x) % P) % P;
f[i] = (f[i] + P) % P;
if (p[i].x == N && p[i].y == M){
printf("%lld\n",f[i]);
}
}
return 0;
}

BZOJ3782 上学路线 【dp + Lucas + CRT】的更多相关文章

  1. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  2. 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

    题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...

  3. bzoj3782上学路线

    题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数) ...

  4. BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理

    我们枚举第一个经过的坏点,然后DP即可. 状态转移方程不是难点,难点在于组合数的处理. 将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论 $n=a_1 * p^k+a_2*p^k-1...$ $ ...

  5. BZOJ3782 上学路线

    设障碍个数为,\(obs\)则一般的容斥复杂度为\(O(2^{obs})\).但因为这个题是网格图,我们可以用DP解.设\(f[i]\)表示不经过任何障碍到达第\(i\)个障碍的方案数,转移时枚举可以 ...

  6. Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT

    首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...

  7. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  8. 【BZOJ3782】上学路线 组合数+容斥+CRT

    [BZOJ3782]上学路线 Description 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不 ...

  9. bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp

    LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...

随机推荐

  1. Spring学习(六)-----Spring使用@Autowired注解自动装配

    Spring使用@Autowired注解自动装配 在上一篇 Spring学习(三)-----Spring自动装配Beans示例中,它会匹配当前Spring容器任何bean的属性自动装配.在大多数情况下 ...

  2. Mysql取消SSH链接和恢复SSH链接

    取消SSH链接//键入密码,链接上mysql mysql -u root -p USE MYSQL; GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIF ...

  3. PHP基础知识试题

    转载于:http://www.php.cn/toutiao-415599.html 1.PHP中传值与传引用的区别,什么时候传值,什么时候传引用? 按值传递:函数范围内对值任何改变在函数外部都会被忽略 ...

  4. Base64编码后通过Url传值

    Base64编码简介 Base编码使用"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",再加上补 ...

  5. Sqlite数据多表联合update

    其实在Mysql中,多表联合update不是什么难事. 语法: 1 UPDATE table_references SET col_name1=expr1 [, col_name2=expr2 ... ...

  6. maven 手动安装jar包

    1.问题 maven有时候在pom文件引入jar包会报错,所以可以通过手动导入jar包的方式导入. 2.解决: 通过maven命令导入jar包, mvn install:install-file -D ...

  7. nexus实现从windows迁移至Linux平台

    说明: 由于老环境是在本地windows 2008 R2里面搭建的nexus,前面搭建了jenkins,需要将maven私库迁移至云服务器的CentOS 7系统下,之前没做过nexus的迁移,在网上看 ...

  8. Amazon.com 购物 信用卡预售期

    I understand and thanks for confirming. In this case, the $1.00 is not a charge.  It is an authoriza ...

  9. JS - Promise使用详解--摘抄笔记

    第一部分: JS - Promise使用详解1(基本概念.使用优点) 一.promises相关概念 promises 的概念是由 CommonJS 小组的成员在 Promises/A 规范中提出来的. ...

  10. 网易客户端授权密码,errormsg='authentication failed (method LOGIN)' exitcode=EX_NOPERM

    zabbix群里一网友在安装msmtp+mutt测试发送邮件失败 配置文件如下: /usr/local/msmtp/etc/msmtprc account default host smtp..com ...