ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ' + ' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are n + 1 levels in the game and ZS the Coder start at the level 1.

When ZS the Coder is at level k, he can :

  1. Press the ' + ' button. This increases the number on the screen by exactly k. So, if the number on the screen was x, it becomes x + k.
  2. Press the '' button. Let the number on the screen be x. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes k + 1. This button can only be pressed when x is a perfect square, i.e. x = m2 for some positive integer m.

Additionally, after each move, if ZS the Coder is at level k, and the number on the screen is m, then m must be a multiple of k. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5.

ZS the Coder needs your help in beating the game — he wants to reach level n + 1. In other words, he needs to press the '' button n times. Help him determine the number of times he should press the ' + ' button before pressing the '' button at each level.

Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level n + 1, but not necessarily a sequence minimizing the number of presses.

Input

The first and only line of the input contains a single integer n (1 ≤ n ≤ 100 000), denoting that ZS the Coder wants to reach level n + 1.

Output

Print n non-negative integers, one per line. i-th of them should be equal to the number of times that ZS the Coder needs to press the ' + ' button before pressing the '' button at level i.

Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018.

It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.

Example

Input
3
Output
14
16
46
Input
2
Output
999999999999999998
44500000000
Input
4
Output
2
17
46
97

Note

In the first sample case:

On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '' button, and the number became .

After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '' button, levelling up and changing the number into .

After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '' button, levelling up and changing the number into .

Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4.

Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '' button is pressed, the number becomes  and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution.

In the second sample case:

On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 1018. Then, ZS the Coder pressed the '' button, and the number became .

After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 109 + 44500000000·2 = 9·1010. Then, ZS pressed the '' button, levelling up and changing the number into .

Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.

有两个操作,没进行一次开平方操作,level  k 提升1,输出当level提升到n+1,要进行几个+操作,每次加k,进行开平方的数t满足t%((k+1)^2)==0,而且t%k==0,所以每次的t就是

k*k*(k+1)*(k+1)恰好是平方数,开平方后是k*(k-1),上个level的就是k*(k-1),输出(k*k*(k+1)*(k+1)-k*(k-1))/k=k*(k+1)*(k+1)-k+1.

代码:

#include <iostream>

using namespace std;

int main()
{
int n;
cin>>n;
cout<<<<endl;
for(long long i = ;i <= n;i ++)
{
cout<<((i+)*i*(i+) - i+)<<endl;
}
}

Plus and Square Root的更多相关文章

  1. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  2. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  3. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  4. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  6. Square Root

    Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...

  7. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  8. CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)

    Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...

  9. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

随机推荐

  1. uva1416 dijkstra

    大白书P330 这题比较麻烦 给出一个n个节点m条边的无向图,每条边上有一个正权.令c等于每对节点的最短路长度之和.例n=3时, c = d(1,1)+d(1,2)+d(1,3)+d(2,1)+d(2 ...

  2. (转载)找圆算法((HoughCircles)总结与优化

      Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆 ...

  3. 20145311 实验一 "Java开发环境的熟悉"

    20145311 实验一 "Java开发环境的熟悉" 程序设计过程 实验内容 -实现四则运算,并进行测试 编写代码 1.四则运算就四种运算,我就做了个简单的,输入两个数,然后选择一 ...

  4. 2017-2018-1 JaWorld 第三周作业

    2017-2018-1 JaWorld 第三周作业 团队展示 队员学号 队名 团队项目描述 队员风采 团队的特色 团队合照 团队初步合作 前两周的反思与总结 需要改进的地方 团队选题 *采访老师或有开 ...

  5. 基于spring boot admin 做监控的一些问题记录

    问题一 各个健康节点权限问题 解决方式 加入权限模块 <dependency> <groupId>org.springframework.boot</groupId> ...

  6. HDU 2485 Destroying the bus stations(费用流)

    http://acm.hdu.edu.cn/showproblem.php?pid=2485 题意: 现在要从起点1到终点n,途中有多个车站,每经过一个车站为1时间,现在要在k时间内到达终点,问至少要 ...

  7. POJ 3613 Cow Relays(floyd+快速幂)

    http://poj.org/problem?id=3613 题意: 求经过k条路径的最短路径. 思路: 如果看过<矩阵乘法在信息学的应用>这篇论文就会知道 现在我们在邻接矩阵中保存距离, ...

  8. RabbitMQ入门_03_推拉模式

    我们知道,消费者有两种方式从消息中间件获取消息: 推模式:消息中间件主动将消息推送给消费者 拉模式:消费者主动从消息中间件拉取消息 推模式将消息提前推送给消费者,消费者必须设置一个缓冲区缓存这些消息. ...

  9. $ocLazyLoad

    博客:http://zhidao.baidu.com/link?url=1eODexxXPsl2gy4UsRnfIqPJnzFrzFk2JJad-cjWDiyCKkb4qxS8scvxoMRqM0Fw ...

  10. log模块和report模块

    这两个模块不需要管,我们生成的log和report直接添加到这里就好