ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ' + ' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are n + 1 levels in the game and ZS the Coder start at the level 1.

When ZS the Coder is at level k, he can :

  1. Press the ' + ' button. This increases the number on the screen by exactly k. So, if the number on the screen was x, it becomes x + k.
  2. Press the '' button. Let the number on the screen be x. After pressing this button, the number becomes . After that, ZS the Coder levels up, so his current level becomes k + 1. This button can only be pressed when x is a perfect square, i.e. x = m2 for some positive integer m.

Additionally, after each move, if ZS the Coder is at level k, and the number on the screen is m, then m must be a multiple of k. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5.

ZS the Coder needs your help in beating the game — he wants to reach level n + 1. In other words, he needs to press the '' button n times. Help him determine the number of times he should press the ' + ' button before pressing the '' button at each level.

Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level n + 1, but not necessarily a sequence minimizing the number of presses.

Input

The first and only line of the input contains a single integer n (1 ≤ n ≤ 100 000), denoting that ZS the Coder wants to reach level n + 1.

Output

Print n non-negative integers, one per line. i-th of them should be equal to the number of times that ZS the Coder needs to press the ' + ' button before pressing the '' button at level i.

Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018.

It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.

Example

Input
3
Output
14
16
46
Input
2
Output
999999999999999998
44500000000
Input
4
Output
2
17
46
97

Note

In the first sample case:

On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '' button, and the number became .

After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '' button, levelling up and changing the number into .

After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '' button, levelling up and changing the number into .

Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4.

Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '' button is pressed, the number becomes  and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution.

In the second sample case:

On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 1018. Then, ZS the Coder pressed the '' button, and the number became .

After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 109 + 44500000000·2 = 9·1010. Then, ZS pressed the '' button, levelling up and changing the number into .

Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.

有两个操作,没进行一次开平方操作,level  k 提升1,输出当level提升到n+1,要进行几个+操作,每次加k,进行开平方的数t满足t%((k+1)^2)==0,而且t%k==0,所以每次的t就是

k*k*(k+1)*(k+1)恰好是平方数,开平方后是k*(k-1),上个level的就是k*(k-1),输出(k*k*(k+1)*(k+1)-k*(k-1))/k=k*(k+1)*(k+1)-k+1.

代码:

#include <iostream>

using namespace std;

int main()
{
int n;
cin>>n;
cout<<<<endl;
for(long long i = ;i <= n;i ++)
{
cout<<((i+)*i*(i+) - i+)<<endl;
}
}

Plus and Square Root的更多相关文章

  1. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  2. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  3. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  4. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  6. Square Root

    Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...

  7. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

  8. CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)

    Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...

  9. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

随机推荐

  1. TabControl delphi

    1.TTabControl 组件的典型用法TTabControl 组件使用起来,根本不会使程序简单化,所以不提倡使用此组件,可以用TPageControl组件代替.与多页组件不同的是,虽然Tab 组件 ...

  2. poj1177 Picture 矩形周长并

    地址:http://poj.org/problem?id=1177 题目: Picture Time Limit: 2000MS   Memory Limit: 10000K Total Submis ...

  3. PYPI 国内源

    搬砖自http://www.cnblogs.com/sunnydou/p/5801760.html 阿里云 http://mirrors.aliyun.com/pypi/simple/ 中国科技大学  ...

  4. Javaworkers团队第三周项目总结

    第十三.十四周:按照项目设计,逐步完成各个模块的代码,初步完成项目雏形. 基础知识原理 1.TDD(Test Driven Development, 测试驱动开发),TDD的一般步骤如下: 明确当前要 ...

  5. [SpringBoot] - 配置文件的多种形式及JSR303数据校验

    Springboot配置文件: application.yml   application.properties(自带) yml的格式写起来稍微舒服一点 在application.properties ...

  6. Python学习札记(四十三) IO 3

    参考:操作文件和目录 NOTE: 1.Python内置的os模块可以直接调用操作系统提供的接口函数: 2.os.name 打印操作系统的名称:如果是posix,说明系统是Linux.Unix或Mac ...

  7. HDU 3435 A new Graph Game(最小费用流:有向环权值最小覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3435 题意:有n个点和m条边,你可以删去任意条边,使得所有点在一个哈密顿路径上,路径的权值得最小. 思路: 费用 ...

  8. Solidity 官方文档中文版 3_安装Solidity

    基于浏览器的Solidity 如果你只是想尝试一个使用Solidity的小合约,你不需要安装任何东西,只要访问 基于浏览器的Solidity http://remix.ethereum.org/. 如 ...

  9. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  10. JS localStorage 存储变量

    if(!window.localStorage && /MSIE/.test(navigator.userAgent)){ if(!window.UserData) { window. ...