Plus and Square Root
ZS the Coder is playing a game. There is a number displayed on the screen and there are two buttons, ' + ' (plus) and '' (square root). Initially, the number 2 is displayed on the screen. There are n + 1 levels in the game and ZS the Coder start at the level 1.
When ZS the Coder is at level k, he can :
- Press the ' + ' button. This increases the number on the screen by exactly k. So, if the number on the screen was x, it becomes x + k.
- Press the '
' button. Let the number on the screen be x. After pressing this button, the number becomes
. After that, ZS the Coder levels up, so his current level becomes k + 1. This button can only be pressed when x is a perfect square, i.e. x = m2 for some positive integer m.
Additionally, after each move, if ZS the Coder is at level k, and the number on the screen is m, then m must be a multiple of k. Note that this condition is only checked after performing the press. For example, if ZS the Coder is at level 4 and current number is 100, he presses the '' button and the number turns into 10. Note that at this moment, 10 is not divisible by 4, but this press is still valid, because after it, ZS the Coder is at level 5, and 10 is divisible by 5.
ZS the Coder needs your help in beating the game — he wants to reach level n + 1. In other words, he needs to press the '' button n times. Help him determine the number of times he should press the ' + ' button before pressing the '
' button at each level.
Please note that ZS the Coder wants to find just any sequence of presses allowing him to reach level n + 1, but not necessarily a sequence minimizing the number of presses.
Input
The first and only line of the input contains a single integer n (1 ≤ n ≤ 100 000), denoting that ZS the Coder wants to reach level n + 1.
Output
Print n non-negative integers, one per line. i-th of them should be equal to the number of times that ZS the Coder needs to press the ' + ' button before pressing the '' button at level i.
Each number in the output should not exceed 1018. However, the number on the screen can be greater than 1018.
It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
Example
3
14
16
46
2
999999999999999998
44500000000
4
2
17
46
97
Note
In the first sample case:
On the first level, ZS the Coder pressed the ' + ' button 14 times (and the number on screen is initially 2), so the number became 2 + 14·1 = 16. Then, ZS the Coder pressed the '' button, and the number became
.
After that, on the second level, ZS pressed the ' + ' button 16 times, so the number becomes 4 + 16·2 = 36. Then, ZS pressed the '' button, levelling up and changing the number into
.
After that, on the third level, ZS pressed the ' + ' button 46 times, so the number becomes 6 + 46·3 = 144. Then, ZS pressed the '' button, levelling up and changing the number into
.
Note that 12 is indeed divisible by 4, so ZS the Coder can reach level 4.
Also, note that pressing the ' + ' button 10 times on the third level before levelling up does not work, because the number becomes 6 + 10·3 = 36, and when the '' button is pressed, the number becomes
and ZS the Coder is at Level 4. However, 6 is not divisible by 4 now, so this is not a valid solution.
In the second sample case:
On the first level, ZS the Coder pressed the ' + ' button 999999999999999998 times (and the number on screen is initially 2), so the number became 2 + 999999999999999998·1 = 1018. Then, ZS the Coder pressed the '' button, and the number became
.
After that, on the second level, ZS pressed the ' + ' button 44500000000 times, so the number becomes 109 + 44500000000·2 = 9·1010. Then, ZS pressed the '' button, levelling up and changing the number into
.
Note that 300000 is a multiple of 3, so ZS the Coder can reach level 3.
有两个操作,没进行一次开平方操作,level k 提升1,输出当level提升到n+1,要进行几个+操作,每次加k,进行开平方的数t满足t%((k+1)^2)==0,而且t%k==0,所以每次的t就是
k*k*(k+1)*(k+1)恰好是平方数,开平方后是k*(k-1),上个level的就是k*(k-1),输出(k*k*(k+1)*(k+1)-k*(k-1))/k=k*(k+1)*(k+1)-k+1.
代码:
#include <iostream> using namespace std; int main()
{
int n;
cin>>n;
cout<<<<endl;
for(long long i = ;i <= n;i ++)
{
cout<<((i+)*i*(i+) - i+)<<endl;
}
}
Plus and Square Root的更多相关文章
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Square Root
Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
- CodeChef - SQRGOOD:Simplify the Square Root (求第N个含平方因子数)
Tiny Wong the chef used to be a mathematics teacher in a senior high school. At that time, he always ...
- Project Euler 57: Square root convergents
五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...
随机推荐
- 5.1 Components — Introduction
1. HTML被设计的时候,浏览器是一个简单的文件浏览器.开发构建大的Web应用程序需要更多的东西. 2. 不是试图取代HTML,然而,Ember.js拥抱它,然后增加了许多新功能使得构建web应用程 ...
- Python 无穷大与NaN
想创建或测试正无穷.负无穷或NaN(非数字) 的浮点数 Python 并没有特殊的语法来表示这些特殊的浮点值,但是可以使用float() 来创建它们.比如: >>> a = floa ...
- 网关服务Spring Cloud Gateway(二)
上一篇文章服务网关 Spring Cloud GateWay 初级篇,介绍了 Spring Cloud Gateway 的相关术语.技术原理,以及如何快速使用 Spring Cloud Gateway ...
- mongoose 获取某个存在的collecion 里的数据
在创建Schma 时指定对应的collection var db_url = 'mongodb://localhost:27017/test'; var db = mongoose.connect(d ...
- c++第二十七天
p135~p140:1.位运算符.作用于整数类型的运算对象,并把运算对象看成是二进制的集合,提供检查和设置二进制位的功能. 2.bitest:一种可表示任意大小的二进制位集合的标准库类型. 3.关于符 ...
- 20145314郑凯杰《网络对抗技术》实验1 逆向及Bof基础实践
20145314郑凯杰<网络对抗技术>实验1 逆向及Bof基础实践 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数 ...
- 20145333 《网络对抗技术》 PC平台逆向破解
20145333 <网络对抗技术> PC平台逆向破解 20145333 <网络对抗技术> PC平台逆向破解 Shellcode注入 基础知识 Shellcode实际是一段代码, ...
- 从0开始学习 GITHUB 系列之「GITHUB 常见的几种操作」【转】
本文转载自:http://stormzhang.com/github/2016/09/21/learn-github-from-zero8/ 版权声明:本文为 stormzhang 原创文章,可以随意 ...
- SprigBoot核心技术
启动原理 运行流程 自动配置原理 一.启动原理 SpringApplication.run(主程序类)– new SpringApplication(主程序类)• 判断是否web应用• 加载并保存所有 ...
- springboot 日期类型处理
1. 日期类型输出参数处理 默认日期格式只支持:2017-07-01T10:10:01 修改为2017-07-01 10:10:01 只需要修改配置文件即可: spring: jackson: dat ...