dp之分组背包hdu3033 最少取1次的解法(推荐)
题意:有n双鞋子,m块钱,k个品牌,(一个品牌可以有多种价值不同的鞋子),接下来n种不同的鞋子,a为所属品牌,b为要花费的钱,c为所能得到的价值。每种价值的鞋子只会买一双,有个人有个伟大的梦想,每个品牌的鞋子至少买一双,问他这个梦想可以实现不?不可以实现输出Impossible,可以实现输出最大价值......
思路:很容易看出来这是个分组背包题,当然这个分组背包有些不同于每组最多取一个的分组背包......但我是觉得,分组背包就这么几种问法吧
1、最常见的、最水的,每组最多取1个.........(一般是隐性的,需要自己分析)
2、每组至少取1个........(就是本题)
3、随意选,可以选,可以不选,可以只选1个,也可以选多个......(暂时还未学,马上会学).....
对于第一种,模板题,只要你可以分析出来,那么可以水过.....
对于第二种,我想说也是模板题,当然是以本题为基础的模板.........
好吧,这道题目,首先,每组至少取一个,就是说必须要取一个,那么数组dp[i][j],代表的含义就是 前i组容量为j的情况下所得到的最大价值为dpi][j];
同样的,我们首先思考它的状态,每组必须要取一个,那么第i组存在的情况下,第i-1组也必须存在,也是回到了前面所做背包所说的那种“一定”、“必须”的状态,那么同样的在动态转移的时候,要判断它的前一个状态合不合法,我个人比较喜欢用0来判断不合法,>0判断合法.......初始化dp[0][0]=1,最后得到的结果减去1......我想说的是,最后的结果不一定会集中在dp[k][m]上,因为这个状态它不一定存在,也就是说,这个状态不一定合法,当然,也没有关系,我们考虑第k组一定要存在,那么扫描下dp[k][i],取最大值就好.....
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
int dp[15][10005],s[105][2],num[15][105];
queue<int>Q[105];
int main()
{
int n,m,k;
while(scanf("%d %d %d",&n,&m,&k)>0)
{ for(int i=0;i<105;i++)
while(!Q[i].empty())
Q[i].pop();
for(int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
Q[a].push(i);
s[i][0]=b;
s[i][1]=c;
} for(int i=1;i<=k;i++)
{
int j=1;
while(!Q[i].empty())
{
num[i][j++]=Q[i].front();
//printf("i==%d %d\n",i,Q[i].front());
Q[i].pop();
}
num[i][0]=j;
} //前面都是将数据处理好
memset(dp,0,sizeof(dp)); //初始化dp
dp[0][0]=1;
int flag=1;
for(int i=1;i<=k;i++) //这是分组
{
if(num[i][0]==1) //要是有一组没有数据,那么说明,它不可能满足每组必须取一个这条件.......
{
flag=0;
break;
}
for(int f=1;f<num[i][0];f++) //不同于最多取一个的分组背包,这里是先放每组有的物品,后放容积.......
{
int xx=num[i][f];;
for(int j=m;j>=0;j--) //至于为什么这么放?我是认为,它是一种模板.......
{
if(j-s[xx][0]>=0&&dp[i][j-s[xx][0]]&&dp[i][j-s[xx][0]]+s[xx][1]>dp[i][j]) //这个判断必须放到第一,以免重复
dp[i][j]=dp[i][j-s[xx][0]]+s[xx][1]; if(j-s[xx][0]>=0&&dp[i-1][j-s[xx][0]]&&dp[i-1][j-s[xx][0]]+s[xx][1]>dp[i][j])//这个必须放在上一个判断下面.....
dp[i][j]=dp[i-1][j-s[xx][0]]+s[xx][1]; }
}
}
int maxx=0;
for(int i=0;i<=m;i++)
if(maxx<dp[k][i])
maxx=dp[k][i];
if(maxx==0||flag==0)
printf("Impossible\n");
else
printf("%d\n",maxx-1);//最大值记得减去1
}
return 0;
}
dp之分组背包hdu3033 最少取1次的解法(推荐)的更多相关文章
- I love sneakers!(分组背包HDU3033)
I love sneakers! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- dp之分组背包hdu3535(推荐)
题意:有0,1,2三种任务,0任务中的任务至少得完成一件,1中的任务最多完成1件,2中的任务随便做.每一个任务最多只能做一次 .n代表有n组任务,t代表有t分钟,m代表这组任务有m个子任务,s代表这m ...
- dp之分组背包hdu1712
题意:有n门课程,和m天时间,完成a[i][j]得到的价值为第i行j列的数字,求最大价值...... 思路:分组背包,就是第n门课程,可以做一天,可以做两天,但它们相斥,你做了一天,就不能再做一天.. ...
- 树形DP+(分组背包||二叉树,一般树,森林之间的转换)codevs 1378 选课
codevs 1378 选课 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 学校实行学分制.每门的必修课都有固定的学分 ...
- UVA Live Archive 4015 Cave (树形dp,分组背包)
和Heroes Of Might And Magic 相似,题目的询问是dp的一个副产物. 距离是不好表示成状态的,但是可以换一个角度想,如果知道了从一个点向子树走k个结点的最短距离, 那么就可以回答 ...
- Codevs1378选课[树形DP|两种做法(多叉转二叉|树形DP+分组背包)---(▼皿▼#)----^___^]
题目描述 Description 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修 ...
- hdoj1561 The more, The Better (树形dp,分组背包)
题目链接:https://vjudge.net/problem/HDU-1561 题意:给一个森林,每个结点有个权值,求选m个结点的最大权值和,并且选子结点前必须先选父结点. 思路: 把每颗树的树根连 ...
- poj1947(树上分组背包)
题目链接:https://vjudge.net/problem/POJ-1947 题意:给定一棵树,求得到一个结点数为p最少删多少条边. 思路: 明显的树形dp,分组背包.用dp[u][j]表示在结点 ...
- 【hdu3033】分组背包(每组最少选一个)
[题意] 有S款运动鞋,一个n件,总钱数为m,求不超过总钱数且每款鞋子至少买一双的情况下,使价值最大.如果有一款买不到,就输出“Impossible". 1<=N<=100 1 ...
随机推荐
- KNOCKOUTJS DOCUMENTATION-绑定(BINDINGS)-自定义绑定
除了ko内建的绑定,还可以自定义绑定,灵活地封装复杂的行为使之可重用. 自定义绑定 注册自定义绑定 向 ko.bindingHandles添加一个子属性来注册一个绑定. ko.bindingHandl ...
- JSTL不同版本和EL表达式的关联
JSTL目前有3个版本:JSTL1.0.JSTL1.1.JSTL1.2 JSTL1.0和JSTL1.1包含jstl.jar和standard.jar这2个jar包,在j2ee4的版本中是需要单独引用这 ...
- lambda 2
# -*- coding: utf-8 -*- #python 27 #xiaodeng def action(x): return (lambda y:x+y) act=action(99) pri ...
- 微信小程序项目实战之天气预报
概述 微信小程序项目实战之天气预报 详细 代码下载:http://www.demodashi.com/demo/10634.html 一.准备工作 1.注册微信小程序 2.注册和风天气账号 3.注册百 ...
- 开源大数据技术专场(下午):Databircks、Intel、阿里、梨视频的技术实践
摘要: 本论坛第一次聚集阿里Hadoop.Spark.Hbase.Jtorm各领域的技术专家,讲述Hadoop生态的过去现在未来及阿里在Hadoop大生态领域的实践与探索. 开源大数据技术专场下午场在 ...
- 国内四大炒股软件APP 全面技术解析
随着人们的焦点逐步由电脑PC端转为手机端之后,国内炒股软件也逐步开始推出手机炒股APP,但是面对如此众多的都以“最牛.最佳”等冠名的APP真的实至名归吗?为了大家不再走弯路,不沉迷智能选股,笔者将近期 ...
- easyui panel自适应问题
项目中要用到easyui,使用也有几年时间了,刚开始使用还不错,毕竟只是简单的增删改查数据,不过到后面越来越觉得easyui不如extjs了,好多复杂一点的问题,easyui表现就力不从心了,题外话就 ...
- DropBox 超实用的免费文件网络同步、备份、分享工具
http://www.iplaysoft.com/dropbox.html DropBox 就是一款非常好用的免费网络文件同步工具(当然它也算是一个服务).当你在电脑A使用DropBox时,指定文件夹 ...
- Android学习系列(6)--App模块化及工程扩展
这篇文章是Android开发人员的必备知识,是我特别为大家整理和总结的,不求完美,但是有用. 1.需求 无论是在.net还是java平台,合理的分层架构是最普遍的模块化思路之一. dll, ...
- iOS - Bundle 资源文件包
1.Bundle 文件 Bundle 文件,简单理解,就是资源文件包.我们将许多图片.XIB.文本文件组织在一起,打包成一个 Bundle 文件.方便在其他项目中引用包内的资源. Bundle 文件是 ...