【BZOJ2004】[Hnoi2010]Bus 公交线路

Description

小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km。 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计线路:
1.设共K辆公交车,则1到K号站作为始发站,N-K+1到N号台作为终点站。
2.每个车站必须被一辆且仅一辆公交车经过(始发站和终点站也算被经过)。 
3.公交车只能从编号较小的站台驶往编号较大的站台。 
4.一辆公交车经过的相邻两个
站台间距离不得超过Pkm。 在最终设计线路之前,小Z想知道有多少种满足要求的方案。由于答案可能很大,你只需求出答案对30031取模的结果。

Input

仅一行包含三个正整数N K P,分别表示公交车站数,公交车数,相邻站台的距离限制。
N<=10^9,1<P<=10,K<N,1<K<=P

Output

仅包含一个整数,表示满足要求的方案数对30031取模的结果。

Sample Input

样例一:10 3 3
样例二:5 2 3
样例三:10 2 4

Sample Output

1
3
81

HINT

【样例说明】
样例一的可行方案如下: (1,4,7,10),(2,5,8),(3,6,9)
样例二的可行方案如下: (1,3,5),(2,4) (1,3,4),(2,5) (1,4),(2,3,5) 
P<=10 , K <=8

题解:看到P和K很小想到状压。用f[i][S]表示已经覆盖了前i个车站,每个车的位置的状态为S的方案数(S只包含前P个车站)。

由于n很大,考虑矩乘优化。我们将没有用的状态扔掉,最终矩阵大小是不超过$C_{10}^5\times C_{10}^5=252\times 252$的。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int P=30031;
int n,m,k,tot;
struct M
{
int v[260][260];
M () {memset(v,0,sizeof(v));}
int * operator [] (int a) {return v[a];}
M operator * (const M &a) const
{
M b;
int i,j,k;
for(i=1;i<=tot;i++) for(j=1;j<=tot;j++) for(k=1;k<=tot;k++) b.v[i][j]=(b.v[i][j]+v[i][k]*a.v[k][j])%P;
return b;
}
}S,T;
int r[1<<10],cnt[1<<10];
inline void pm(int y)
{
while(y)
{
if(y&1) S=S*T;
T=T*T,y>>=1;
}
}
int main()
{
scanf("%d%d%d",&n,&k,&m);
int i,j;
for(i=1;i<(1<<m);i++)
{
cnt[i]=cnt[i-(i&-i)]+1;
if(cnt[i]==k) r[i]=++tot;
}
for(i=1;i<(1<<m);i++) if(r[i])
{
if(i&1) T[r[i]][r[(i>>1)|(1<<(m-1))]]++;
else for(j=0;j<m;j++) if((i>>j)&1) T[r[i]][r[((i^(1<<j))>>1)|(1<<(m-1))]]++;
}
S[1][r[((1<<k)-1)<<(m-k)]]=1;
pm(n-k);
printf("%d",S[1][r[((1<<k)-1)<<(m-k)]]);
return 0;
}

【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法的更多相关文章

  1. BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...

  2. [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...

  3. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  4. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  5. bzoj2004 [Hnoi2010]Bus 公交线路 矩阵快速幂+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2004 题解 如果 \(N\) 没有那么大,考虑把每一位分配给每一辆车. 假设已经分配到了第 \ ...

  6. BZOJ2004: [Hnoi2010]Bus 公交线路

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2004 状压dp+矩阵乘法. f[i][s]表示从第i位至前面的i-k位,第i位必须取的状态. ...

  7. 【BZOJ2004】[HNOI2010]Bus 公交线路

    [BZOJ2004][HNOI2010]Bus 公交线路 题面 bzoj 洛谷 题解 $N$特别大$P,K$特别小,一看就是矩阵快速幂+状压 设$f[S]$表示公交车状态为$S$的方案数 这是什么意思 ...

  8. [BZOJ 2004] [Hnoi2010] Bus 公交线路 【状压DP + 矩阵乘法】

    题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共 ...

  9. 『公交线路 状压dp 矩阵乘法加速』

    公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的 ...

随机推荐

  1. 内网环境NTP服务及时间同步(CentOS6.x)配置和部署

    目标环境,5台linux centos 6.3, 一台作为NTPD服务与外部公共NTP服务同步时间,同时作为内网的NTPD服务器,其他机器与这台服务做时间同步.  服务器IP 角色   说明 同步方式 ...

  2. linux取随机数shell版本

    #!/bin/bash aa=$(-) ..} do useradd $i echo $aa|passwd --stdin $i echo "${i} ${aa}" >> ...

  3. nodejs 模块以及加载机制,主要讨论找不到模块的问题

    最主要的一个思想,加载模块无非就是找到模块在哪,只要清楚了模块的位置以及模块加载的逻辑那么找不到模块的问题就迎刃而解了.本文只是综合了自己所学的知识点进行总结,难免出现理解错误的地方,请见谅. nod ...

  4. 总结golang之map

    总结golang之map 2017年04月13日 23:35:53 趁年轻造起来 阅读数:18637 标签: golangmapgo 更多 个人分类: golang   版权声明:本文为博主原创文章, ...

  5. Redis未授权访问漏洞

    一.漏洞描述和危害  Redis因配置不当可以未授权访问,被攻击者恶意利用.攻击者无需认证访问到内部数据,可能导致敏感信息泄露,黑客也可以恶意执行flushall来清空所有数据. 攻击者可通过EVAL ...

  6. FATAL ERROR: Could not find ./bin/my_print_defaults 解决方法

    FATAL ERROR: Could not find ./bin/my_print_defaults If you compiled from source, you need to run 'ma ...

  7. Photoshop脚本入门

  8. VS2013环境生成和调用DLL动态链接库

    http://blog.csdn.net/u010273652/article/details/25514577 创建动态库方法: 创建动态库是生成 .dll .lib 两个个文件 文件 -> ...

  9. e666. 创建缓冲图像

    A buffered image is a type of image whose pixels can be modified. For example, you can draw on a buf ...

  10. Gray Code - 格雷码

    基本概念 格雷码是一种准权码,具有一种反射特性和循环特性的单步自补码,它的循环.单步特性消除了随机取数时出现重大误差的可能,它的反射.自补特性使得求反非常方便.格雷码属于可靠性编码,是一种错误最小化的 ...