题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径。

先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2).

  否则可以不走生成树上的边,则答案为y*(n-1).

再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去,

  显然跳的越少越好,于是我们只需要找到树的最小路径覆盖,跳路径覆盖数-1次就可以了。

  对于有向图的最小路径覆盖,一般是使用二分图匹配或者最大流来解决的。

  而对于树的最小路径覆盖,可以用树形DP来解决。

  令dp[x][0]表示x不与x的父亲构成路径的最小路径覆盖数,dp[x][1]表示x与x的父亲构成路径的最小路径覆盖数。

  那么则有:

    x没有儿子,dp[x][0]=dp[x][1]=1.

    x只有一个儿子,dp[x][0]=dp[x][1]=dp[son[x]][1];

    x有两个或者更多儿子,dp[x][0]=min(dp[son[x][i]][1]+dp[son[x][j]][1]+dp[son[x]][0])-1. dp[x][1]=min(dp[son[x][i]][1]+dp[son[x]][0]);

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=;
int dee[N], sum, dp[N][]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
int siz=, sum=, f=-INF, s=-INF;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); ++siz; sum+=dp[v][];
if (dp[v][]-dp[v][]>f) s=f, f=dp[v][]-dp[v][];
else if (dp[v][]-dp[v][]>s) s=dp[v][]-dp[v][];
}
if (siz==) dp[x][]=dp[x][]=;
else {
if (siz==) dp[x][]=sum-f, dp[x][]=sum-f;
else dp[x][]=sum-f-s-, dp[x][]=sum-f;
}
}
int main ()
{
int n, x, y, u, v;
scanf("%d%d%d",&n,&x,&y);
FO(i,,n) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u), ++dee[u], ++dee[v];
if (x>=y) {
bool flag=false;
FOR(i,,n) if (dee[i]==n-) flag=true;
if (flag) printf("%lld\n",(LL)(n-)*y+x);
else printf("%lld\n",(LL)(n-)*y);
}
else {
dfs(,);
printf("%lld\n",(LL)(dp[][]-)*y+(LL)(n-dp[][])*x);
}
return ;
}

Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)的更多相关文章

  1. CodeForces 618D Hamiltonian Spanning Tree

    题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...

  2. SPOJ UOFTCG - Office Mates (树的最小路径覆盖)

    UOFTCG - Office Mates no tags  Dr. Baws has an interesting problem. His N graduate students, while f ...

  3. SPOJ - UOFTCG 树的最小路径覆盖

    //SPOJ - UOFTCG 树的最小路径覆盖 #include <bits/stdc++.h> #include <vector> using namespace std; ...

  4. HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)

    题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...

  5. 【HDU1960】Taxi Cab Scheme(最小路径覆盖)

    Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. loj 1429(可相交的最小路径覆盖)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...

  7. 【HDU3861 强连通分量缩点+二分图最小路径覆盖】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...

  8. POJ 3216 最小路径覆盖+floyd

    Repairing Company Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 6646   Accepted: 178 ...

  9. POJ3020Antenna Placement(最小路径覆盖+重在构图)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7788   Accepted: 3880 ...

随机推荐

  1. 20155320 2016-2017-2《Java程序设计》第十二周课堂实践项目

    20155320 2016-2017-2<Java程序设计>第十二周课堂实践项目 1.修改教材P98 Score2.java, 让执行结果数组填充是自己的学号: 2.在IDEA中以TDD的 ...

  2. combobox添加复选框

    问题: 需求提出要做一个下拉框可以多选的 解决方案: //机构树 function initOrgTree() { $('#reportOrg').combobox({ width: 200, edi ...

  3. BZOJ2039_employ人员雇佣_KEY

    题目传送门 网络流,求最小割. 设tot为所有盈利的和,即所有人(不花钱)雇佣. 对于S->i建一条容量为c[i]的边,i->j建一条S[i][j]*2的边,之所以这样建是因为如果不选这个 ...

  4. 【MYSQL用户创建报错】ERROR 1396 (HY000): Operation CREATE USER failed for 'user1'@'%'

    原文参考自:http://blog.csdn.net/u011575570/article/details/51438841 1.创建用户的时候报错ERROR 1396 (HY000): Operat ...

  5. uvaoj 156Ananagrams(map和vector组合使用)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. gitlab runner 填坑记

    一.Gitlab Runner  CI/CD 错误: Couldn't connect to Docker daemon at http+docker://localhost - is it runn ...

  7. cmake-cmake.1-3.11.4机翻

    指数 下一个 | 上一个 | CMake » git的阶段 git的主 最新发布的 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 ...

  8. RC电路简介,RC串并联电路的工作原理及应用

    RC电路简介,RC串并联电路的工作原理及应用 RC电路全称Resistance-Capacitance Circuits.一个 相移电路(RC电路)或称 RC滤波器. RC网络, 是一个包含利用电压源 ...

  9. Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )

    Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...

  10. ORM(object relational Maping)

    ORM即对象关系映射,是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述对象和数据库之间映射的元数据,将java程序中的对象自动持久化到关系数据库中.本质上 ...