某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。

如果一个方案是最优的,那么把需要同时加工的任务都移动到最前面,显然不会变劣。后面两个机器的加工时间就都是独立的了。

所以用动态规划就可以不会有后效性了。因为顺序是不会受到影响的。

令dp[i][j]表示完成前i个任务时,机器A用了j时间时机器B用的最少时间。

那么则有dp[i][j]=min(dp[i-1][j-t1],dp[i-1][j]+t2,dp[i-1][j-t3]+t3);

时间复杂度O(nt).空间复杂度可以用滚动数组优化为O(t).

  1. # include <cstdio>
  2. # include <cstring>
  3. # include <cstdlib>
  4. # include <iostream>
  5. # include <vector>
  6. # include <queue>
  7. # include <stack>
  8. # include <map>
  9. # include <set>
  10. # include <cmath>
  11. # include <algorithm>
  12. using namespace std;
  13. # define lowbit(x) ((x)&(-x))
  14. # define pi acos(-1.0)
  15. # define eps 1e-
  16. # define MOD
  17. # define INF
  18. # define mem(a,b) memset(a,b,sizeof(a))
  19. # define FOR(i,a,n) for(int i=a; i<=n; ++i)
  20. # define FO(i,a,n) for(int i=a; i<n; ++i)
  21. # define bug puts("H");
  22. # define lch p<<,l,mid
  23. # define rch p<<|,mid+,r
  24. //# define mp make_pair
  25. # define pb push_back
  26. typedef pair<int,int> PII;
  27. typedef vector<int> VI;
  28. # pragma comment(linker, "/STACK:1024000000,1024000000")
  29. typedef long long LL;
  30. int Scan() {
  31. int x=,f=;char ch=getchar();
  32. while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
  33. while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
  34. return x*f;
  35. }
  36. void Out(int a) {
  37. if(a<) {putchar('-'); a=-a;}
  38. if(a>=) Out(a/);
  39. putchar(a%+'');
  40. }
  41. const int N=;
  42. //Code begin...
  43.  
  44. struct Node{int a, b, c;}node[N];
  45. int dp[][N*];
  46.  
  47. int main ()
  48. {
  49. int n;
  50. scanf("%d",&n);
  51. FOR(i,,n) scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
  52. int flag=;
  53. FO(i,,N*) dp[flag][i]=INF;
  54. dp[flag][]=;
  55. FOR(i,,n) {
  56. flag^=;
  57. FO(j,,N*) dp[flag][j]=INF;
  58. FO(j,,N*) {
  59. if (node[i].a&&j>=node[i].a) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].a]);
  60. if (node[i].b) dp[flag][j]=min(dp[flag][j],dp[flag^][j]+node[i].b);
  61. if (node[i].c&&j>=node[i].c) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].c]+node[i].c);
  62. }
  63. }
  64. int ans=INF;
  65. FO(i,,N*) ans=min(ans,max(i,dp[flag][i]));
  66. printf("%d\n",ans);
  67. return ;
  68. }

BZOJ 1222 产品加工(DP)的更多相关文章

  1. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

  2. 【BZOJ 1222】 [HNOI2001] 产品加工(DP)

    Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...

  3. Bzoj 1222: [HNOI2001]产品加工 动态规划

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 486  Solved: 298[Submit][Status ...

  4. bzoj 1222 DP

    用w[i]表示在A中用了i的时间时在B中最少用多长时间,然后转移就可以了. 备注:这个边界不好定义,所以可以每次用一个cur来存储最优值,然后对w[i]赋值就可以了. /*************** ...

  5. BZOJ 1222: [HNOI2001]产品加工

    F[i]表示第一个机器用了i的时间,第二个机器的最小时间 转移即可 #include<cstdio> #include<algorithm> using namespace s ...

  6. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  7. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  8. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

  9. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

随机推荐

  1. Ubuntu配置android环境

    jdk:http://www.oracle.com/technetwork/cn/java/javase/downloads/index.html 安装JDK的步骤:http://jingyan.ba ...

  2. 【BZOJ4016】[FJOI2014]最短路径树问题

    [BZOJ4016][FJOI2014]最短路径树问题 题面 bzoj 洛谷 题解 虽然调了蛮久,但是思路还是蛮简单的2333 把最短路径树构出来,然后点分治就好啦 ps:如果树构萎了,这组数据可以卡 ...

  3. sql异常 获取数据失败的原因及解决方案

    使用dbutils工具类时 不能使用char作为sql的字段类型 报错提示不能转换 所以替换成别的(一般是String)即可

  4. 搜索引擎ElasticSearch系列(一): ElasticSearch2.4.4环境搭建

    一:ElasticSearch简介 Elasticsearch is a distributed, RESTful search and analytics engine capable of sol ...

  5. 七、EnterpriseFrameWork框架基础功能之字典数据配置管理

    框架中的“通用字典数据配置管理”主要解决的问题是,所有的行业软件给客户实施第一步一般都是基础数据的维护,一个系统的字典是少不了的,涉及业务范围越广字典就越多,如果每一个字典数据都做一个界面来进行维护数 ...

  6. zookeeper 简单小节

    1. ZooKeeper 是什么 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务.主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储 ...

  7. js中对象转化成字符串、数字或布尔值的转化规则

    js中对象可以转化成 字符串.数字.布尔值 一.对象转化成字符串: 规则: 1.如果对象有toString方法,则调用该方法,并返回相应的结果:(代码通常会执行到这,因为在所有对象中都有toStrin ...

  8. nginx启动、停止重启

    启动 启动代码格式:nginx安装目录地址 -c nginx配置文件地址 例如: [root@LinuxServer sbin]# /usr/local/nginx/sbin/nginx -c /us ...

  9. Zabbix自动发现之fping

    原文发表于cu:2016-06-21 Zabbix自动发现功能从配置流程上比较简单:Discovery与Action. 在做Zabbix的自动发现验证时,使用"ICMP ping" ...

  10. 微软职位内部推荐-SW Engineer II for Windows System

    微软近期Open的职位: Microsoft's Operating Systems Group delivers the operating system and core user experie ...