BZOJ 1222 产品加工(DP)
某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。
如果一个方案是最优的,那么把需要同时加工的任务都移动到最前面,显然不会变劣。后面两个机器的加工时间就都是独立的了。
所以用动态规划就可以不会有后效性了。因为顺序是不会受到影响的。
令dp[i][j]表示完成前i个任务时,机器A用了j时间时机器B用的最少时间。
那么则有dp[i][j]=min(dp[i-1][j-t1],dp[i-1][j]+t2,dp[i-1][j-t3]+t3);
时间复杂度O(nt).空间复杂度可以用滚动数组优化为O(t).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
//# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Node{int a, b, c;}node[N];
int dp[][N*]; int main ()
{
int n;
scanf("%d",&n);
FOR(i,,n) scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
int flag=;
FO(i,,N*) dp[flag][i]=INF;
dp[flag][]=;
FOR(i,,n) {
flag^=;
FO(j,,N*) dp[flag][j]=INF;
FO(j,,N*) {
if (node[i].a&&j>=node[i].a) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].a]);
if (node[i].b) dp[flag][j]=min(dp[flag][j],dp[flag^][j]+node[i].b);
if (node[i].c&&j>=node[i].c) dp[flag][j]=min(dp[flag][j],dp[flag^][j-node[i].c]+node[i].c);
}
}
int ans=INF;
FO(i,,N*) ans=min(ans,max(i,dp[flag][i]));
printf("%d\n",ans);
return ;
}
BZOJ 1222 产品加工(DP)的更多相关文章
- bzoj 1222: [HNOI2001]产品加工 dp
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 381 Solved: 218[Submit][Status ...
- 【BZOJ 1222】 [HNOI2001] 产品加工(DP)
Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...
- Bzoj 1222: [HNOI2001]产品加工 动态规划
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 486 Solved: 298[Submit][Status ...
- bzoj 1222 DP
用w[i]表示在A中用了i的时间时在B中最少用多长时间,然后转移就可以了. 备注:这个边界不好定义,所以可以每次用一个cur来存储最优值,然后对w[i]赋值就可以了. /*************** ...
- BZOJ 1222: [HNOI2001]产品加工
F[i]表示第一个机器用了i的时间,第二个机器的最小时间 转移即可 #include<cstdio> #include<algorithm> using namespace s ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- BZOJ1222[HNOI2001]产品加工——DP
题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- 【BZOJ1222】[HNOI2001]产品加工 DP
[BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...
随机推荐
- 20145209 实验四 《android开发基础》 实验报告
20145209 实验四 <android开发基础> 实验报告 实验内容 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBI ...
- 20145226夏艺华 《Java程序设计》第7&8周学习总结、实验一
[实验一]http://www.cnblogs.com/bestixyh/p/6358734.html [第7周]http://www.cnblogs.com/bestixyh/p/6380475.h ...
- Mac 用Ctr+C复制,Ctr+V 粘贴
用习惯Windows的用户,进入Mac,不习惯快捷方式. 用下面的方法,可以返回windows 习惯. 1.进入系统偏好设置->键盘->修饰键 2.Control 选择 Command,C ...
- cv::Mat转换QImage
cvtColor(img, img, CV_BGR2RGB); QImage image((uchar*)img.data,img.cols,img.rows,QImage::Format_RGB88 ...
- 1150: [CTSC2007]数据备份Backup
1150: [CTSC2007]数据备份Backup https://lydsy.com/JudgeOnline/problem.php?id=1150 分析: 堆+贪心. 每次选最小的并一定是最优的 ...
- [vijos1067]Warcraft III 守望者的烦恼
就是上次考得fyfy.竟然是原题... // It is made by XZZ #include<cstdio> #include<algorithm> #include&l ...
- Entity Framework中执行Sql语句
如果想在EF框架中执行Sql语句,其实很简单,EF里面已经提供了相关的方法(此处使用的EF为EF4.1版本). EF中提供了两个方法,一个是执行查询的Sql语句SqlQue ...
- Python 装饰器备忘
def deco(attr): ''' 装饰器,共包含三层返回结构 \n 第一层:用于接收 @deco 的参数,此处的代码只在初始化装饰器时执行一次 \n 第二层:用于接收 function,此处的代 ...
- JMeter测试WebSocket的经验总结
最近有一个微信聊天系统的项目需要性能测试,既然是测试微信聊天,肯定绕不开websocket接口的测试,首选工具是Jmeter,网上能搜到现成的方法,但是网上提供的jar包往往不是最新的,既然是用最新版 ...
- Lua学习笔记(2): 流程控制与循环以及初涉迭代器
条件判断语句 --if...语句 if (表达式) then --表达式为1时执行的语句 end --if...else语句 if (表达式) then --表达式为1时执行的语句 else --表达 ...