题目描述

给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K

输入

N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k

输出

一行,有多少对点之间的距离小于等于k

样例输入

7
1 6 13
6 3 9
3 5 7
4 1 3
2 4 20
4 7 2
10

样例输出

5
 
点分治模板题,因为统计答案满足逆运算,所以可以用单步容斥来统计,将“任意两个子节点路径<=k的方案数”-“在同一子树内两节点路径<=k的方案数”就是最终答案。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,k;
int tot;
int num;
int cnt;
int ans;
int root;
int x,y,z;
int s[80000];
int to[160000];
int mx[80000];
int val[160000];
int head[80000];
int next[160000];
int size[80000];
bool vis[80000];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=v;
}
void getroot(int x,int fa)
{
size[x]=1;
mx[x]=0;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
getroot(to[i],x);
size[x]+=size[to[i]];
mx[x]=max(mx[x],size[to[i]]);
}
}
mx[x]=max(mx[x],num-size[x]);
if(!root||mx[x]<mx[root])
{
root=x;
}
}
void dfs(int x,int fa,int dis)
{
s[cnt++]=dis;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
dfs(to[i],x,dis+val[i]);
}
}
}
int calc(int x,int v)
{
int ans=0;
cnt=0;
dfs(x,0,v);
sort(s,s+cnt);
for(int l=0,r=cnt-1;l<r;l++)
{
while(s[l]+s[r]>k&&l<r)
{
r--;
}
ans+=r-l;
}
return ans;
}
void partition(int x)
{
vis[x]=1;
ans+=calc(x,0);
for(int i=head[x];i;i=next[i])
{
if(!vis[to[i]])
{
ans-=calc(to[i],val[i]);
num=size[to[i]];
root=0;
getroot(to[i],0);
partition(root);
}
}
}
int main()
{
mx[0]=2147483647;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
scanf("%d",&k);
getroot(1,0);
partition(root);
printf("%d",ans);
}

BZOJ1468Tree——点分治的更多相关文章

  1. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  2. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  3. [poj1741][tree] (树/点分治)

    Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...

  4. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  5. BZOJ 3262 陌上花开 ——CDQ分治

    [题目分析] 多维问题,我们可以按照其中一维排序,然后把这一维抽象的改为时间. 然后剩下两维,就像简单题那样,排序一维,树状数组一维,按照时间分治即可. 挺有套路的一种算法. 时间的抽象很巧妙. 同种 ...

  6. BZOJ 1176 [Balkan2007]Mokia ——CDQ分治

    [题目分析] 同BZOJ2683,只需要提前处理s对结果的影响即可. CDQ的思路还是很清晰的. 排序解决一维, 分治时间, 树状数组解决一维. 复杂度是两个log [代码] #include < ...

  7. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  8. HDU5977 Garden of Eden(树的点分治)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5977 Description When God made the first man, he ...

  9. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

随机推荐

  1. ASP.NET Core 中 HttpContext 详解与使用 | Microsoft.AspNetCore.Http 详解 (转载)

    “传导体” HttpContext 要理解 HttpContext 是干嘛的,首先,看图 图一 内网访问程序 图二 反向代理访问程序 ASP.NET Core 程序中,Kestrel 是一个基于 li ...

  2. CF1101G (Zero XOR Subset)-less 线性基

    传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...

  3. 【转】Oracle virtual column(虚拟列)

    为什么要使用虚拟列 (1)可以为虚拟列创建索引(Oracle为其创建function index) (2)可以搜集虚拟列的统计信息statistics,为CBO提供一定的采样分析. (3)可以在whe ...

  4. OI骗分神器——模拟退火算法

    前言&&为什么要学模拟退火 最近一下子学了一大堆省选算法,所以搞一个愉快一点的东西来让娱乐一下 其实是为了骗到更多的分,然后证明自己的RP. 说实话模拟退火是一个集物理与IT多方面知识 ...

  5. EZ 2018 06 24 NOIP2018 模拟赛(二十)

    很久之前写的一套题了,由于今天的时间太多了,所以记起来就写掉算了. 这一场尽管T2写炸了,但也莫名Rank4涨了Rating.不过还是自己太菜. A. 环游世界 首先我们先排个序,想一下如果不用走回来 ...

  6. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  7. dp入门——由分杆问题认识动态规划

    简介 如果你常刷leetcode,会发现许多问题带有Dynamic Programming的标签.事实上带有dp标签的题目有115道,大部分为中等和难题,占所有题目的12.8%(2018年9月),是占 ...

  8. iOS开发简记(3):tips提示

    我有一个需求:在点击或长按某个按钮时,需要显示提示,包括简单的文字提示,还有复杂一点的图片甚至是动态图的提示(可能还要加上文字). (1)文字tips 使用之前介绍的qmuikit里面的QMUITip ...

  9. jdbc操作根据bean类自动组装sql,天啦,我感觉我实现了hibernate

    场景:需要将从ODPS数仓中计算得到的大额可疑交易信息导入到业务系统的mysql中供业务系统审核.最简单的方式是用阿里云的组件自动进行数据同步了.但是本系统是开放是为了产品化,要保证不同环境的可移植性 ...

  10. 基于Python的ModbusTCP客户端实现

    Modbus协议是由Modicon公司(现在的施耐德电气Schneider Electric)推出,主要建立在物理串口.以太网TCP/IP层之上,目前已经成为工业领域通信协议的业界标准,广泛应用在工业 ...