BZOJ1468Tree——点分治
题目描述
输入
输出
样例输入
1 6 13
6 3 9
3 5 7
4 1 3
2 4 20
4 7 2
10
样例输出
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,k;
int tot;
int num;
int cnt;
int ans;
int root;
int x,y,z;
int s[80000];
int to[160000];
int mx[80000];
int val[160000];
int head[80000];
int next[160000];
int size[80000];
bool vis[80000];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=v;
}
void getroot(int x,int fa)
{
size[x]=1;
mx[x]=0;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
getroot(to[i],x);
size[x]+=size[to[i]];
mx[x]=max(mx[x],size[to[i]]);
}
}
mx[x]=max(mx[x],num-size[x]);
if(!root||mx[x]<mx[root])
{
root=x;
}
}
void dfs(int x,int fa,int dis)
{
s[cnt++]=dis;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
dfs(to[i],x,dis+val[i]);
}
}
}
int calc(int x,int v)
{
int ans=0;
cnt=0;
dfs(x,0,v);
sort(s,s+cnt);
for(int l=0,r=cnt-1;l<r;l++)
{
while(s[l]+s[r]>k&&l<r)
{
r--;
}
ans+=r-l;
}
return ans;
}
void partition(int x)
{
vis[x]=1;
ans+=calc(x,0);
for(int i=head[x];i;i=next[i])
{
if(!vis[to[i]])
{
ans-=calc(to[i],val[i]);
num=size[to[i]];
root=0;
getroot(to[i],0);
partition(root);
}
}
}
int main()
{
mx[0]=2147483647;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
scanf("%d",&k);
getroot(1,0);
partition(root);
printf("%d",ans);
}
BZOJ1468Tree——点分治的更多相关文章
- [bzoj2152][聪聪和可可] (点分治+概率)
Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- [poj1741][tree] (树/点分治)
Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 3262 陌上花开 ——CDQ分治
[题目分析] 多维问题,我们可以按照其中一维排序,然后把这一维抽象的改为时间. 然后剩下两维,就像简单题那样,排序一维,树状数组一维,按照时间分治即可. 挺有套路的一种算法. 时间的抽象很巧妙. 同种 ...
- BZOJ 1176 [Balkan2007]Mokia ——CDQ分治
[题目分析] 同BZOJ2683,只需要提前处理s对结果的影响即可. CDQ的思路还是很清晰的. 排序解决一维, 分治时间, 树状数组解决一维. 复杂度是两个log [代码] #include < ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5977 Garden of Eden(树的点分治)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5977 Description When God made the first man, he ...
- Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)
题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...
随机推荐
- docker命名空间、控制组及联合文件系统概念
基本架构 命名空间 控制组 联合文件系统 docker底层依赖的核心技术主要包括操作系统的命名空间(Namespace).控制组(Control Groups).联合文件系统(Union File S ...
- SQL Server中的Merge关键字(转载)
简介 Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根 ...
- 深入理解 JVM(上)
菜鸟拙见,望请纠正(首先:推荐一本书[链接:https://pan.baidu.com/s/15I062n5LPYtRmueAAUFuFA 密码:kyo1]) 一:JVM体系概述 1:JVM是运行在操 ...
- Ubuntu16.04下完美切换Python版本
http://blog.csdn.net/beijiu5854/article/details/77897767
- java jdk 配置
1.配置 C:\Program Files\Java\jdk1.8.0_131\bin 路径 到环境变量 Path
- cp 命令有坑
cp 是个很常用的命令, 基本语法为 cp -v a b 把文件a 复制为文件b(-v为显示做了什么,这是非常安全的做法,建议新手添加此参数) 参数说明: -a:此选项通常在复制目录时使用, ...
- HNOI2019 白兔之舞 dance
HNOI2019 白兔之舞 dance 显然\(n=3\)就是\(n=1\)的扩展版本,先来看看\(n=1\)怎么做. 令\(W=w[1][1]\),显然答案是:\(ans_t=\sum_{i\mod ...
- VitualBox安装linux记录
下载镜像 CentOS 7镜像下载 阿里云站点:http://mirrors.aliyun.com/centos/7/isos/x86_64/ VirtualBox安装linux https://ww ...
- 一个高性能的对象属性复制类,支持不同类型对象间复制,支持Nullable<T>类型属性
由于在实际应用中,需要对大量的对象属性进行复制,原来的方法是通过反射实现,在量大了以后,反射的性能问题就凸显出来了,必须用Emit来实现. 搜了一圈代码,没发现适合的,要么只能在相同类型对象间复制,要 ...
- Mysqldump备份说明及数据库备份脚本分享-运维笔记
MySQLdump是MySQL自带的导出数据工具,即mysql数据库中备份工具,用于将MySQL服务器中的数据库以标准的sql语言的方式导出,并保存到文件中.Mysqldump是一个客户端逻辑备份的工 ...