一直不明白为什么要用floyd求传递闭包,直接搜不是更快嘛……不过其实可以用bitset优化,方法也比较显然。bitset是真的神奇啊,好多01状态且转移相似的东西都可以用这个优化一下。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<bitset>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,ans=;
bitset<N> a[N];
int main()
{
freopen("bzoj2208.in","r",stdin);
freopen("bzoj2208.out","w",stdout);
n=read();
for (int i=;i<=n;i++)
{
char c=getchar();
while (c!=''&&c!='') c=getchar();
for (int j=;j<=n;j++)
a[i][j]=c^,c=getchar();
a[i][i]=;
}
for (int k=;k<=n;k++)
for (int i=;i<=n;i++)
if (a[i][k]) a[i]|=a[k];
for (int i=;i<=n;i++) ans+=a[i].count();
cout<<ans;
fclose(stdin);fclose(stdout);
return ;
}

BZOJ2008 JSOI2010连通数(floyd+bitset)的更多相关文章

  1. BZOJ 2208: [Jsoi2010]连通数 tarjan bitset

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ2208: [Jsoi2010]连通数(tarjan bitset floyd)

    题意 题目链接 Sol 数据水的一批,\(O(n^3)\)暴力可过 实际上只要bitset优化一下floyd复杂度就是对的了(\(O(\frac{n^3}{32})\)) 还可以缩点之后bitset维 ...

  3. 2018.09.11 bzoj2208: [Jsoi2010]连通数(bitset+floyd)

    传送门 听说正解是缩点+dfs? 直接bitset优化floyd传递闭包就行了.(尽管时间复杂度是假的O(n3/32)" role="presentation" styl ...

  4. bzoj2208 [Jsoi2010]连通数(scc+bitset)

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1879  Solved: 778[Submit][Status ...

  5. BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset

    BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i ...

  6. bzoj2208:[Jsoi2010]连通数

    http://blog.csdn.net/u013598409/article/details/47037499 里面似乎有生成数据的... //我本来的想法是tarjan缩点之后然后将图遍历一遍就可 ...

  7. 2208: [Jsoi2010]连通数

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1371  Solved: 557[Submit][Status ...

  8. bzoj 2208 [Jsoi2010]连通数

    2208: [Jsoi2010]连通数 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 输入数据第一行是图顶点的数量,一个正整数N ...

  9. 【BZOJ2208】[JSOI2010]连通数(Tarjan)

    [BZOJ2208][JSOI2010]连通数(Tarjan) 题面 BZOJ 洛谷 题解 先吐槽辣鸡洛谷数据,我写了个\(O(nm)\)的都过了. #include<iostream> ...

随机推荐

  1. Omi框架学习之旅 - 插件机制之omi-transform及原理说明

    给omi-transform插件做个笔记,使用起来也很爽. transform.js这个库,一直想写一篇帖子的,可是,数学不好,三维矩阵和二位矩阵理解的不好,所以迟迟没写了, 这也是一个神库,反正我很 ...

  2. SkylineGlobe MFC C++ 开发示例代码

    SkylineGlobe的SDK底层是跨平台的C++内核,面向不同平台封装原生的API,具有很高的执行效率, 下面是C++二次开发时的示例代码: #import "D:\Program Fi ...

  3. Android Studio 导入工程

    最简单的方式 等待加载完就好了 第二种方式 在导入别人的android studio项目(假设为项目A)时,会遇到gradle不一致的情况,以下简短介绍解决方法: 1. 打开要导入的项目的目录,删除下 ...

  4. Linux系列教程(五)——Linux常用命令之链接命令和权限管理命令

    前一篇博客我们讲解了Linux文件和目录处理命令,还是老生常淡,对于新手而言,我们不需要完全记住命令的详细语法,记住该命令能完成什么功能,然后需要的时候去查就好了,用的多了我们就自然记住了.这篇博客我 ...

  5. POJ1850&&1019&&1942

    这三道题都水的难以想象,所以就放在一起写 1850 题目大意:有一种一种序列排列方式(如同题目中给出的例子),然后给你一个序列,问你这个序列的排名 首先我们先判断无解的情况,这个就很简单了. 由于题目 ...

  6. NIO之缓冲区

    NIO引入了三个概念: Buffer 缓冲区 Channel 通道 selector 选择器 1.java.io优化建议 操作系统与Java基于流的I/O模型有些不匹配.操作系统要移动的是大块数据(缓 ...

  7. C# 读取Json配置文件

    今天需要用到读取Json配置文件的helper   结果竟然没找到合适的    微软自己有一个 不过不支持.Net fw 4.0 于是自己在NewTonSoft.Json的基础上  加了点小小的封装  ...

  8. 基于DDD的.NET开发框架ABP实例,多租户 (Saas)应用程序,采用.NET MVC, Angularjs, EntityFramework-介绍

    介绍 基于ABPZERO的多租户 (Saas)应用程序,采用ASP.NET MVC, Angularjs-介绍 ASP.NET Boilerplate作为应用程序框架. ASP.NET MVC和ASP ...

  9. restfull环境搭建-helloword(三)

    原文地址:http://only81.iteye.com/blog/1689537 This section creates a CRUD (Create, Read, Update, Delete) ...

  10. 作用域&作用域链和with,catch语句&闭包

    作用域(函数) 作用域:变量与函数的可访问范围,即作用域控制着变量与函数的可见性和生命周期; 在一些类C编程语言中花括号内的每一段代码都有各自的作用域,而且变量在声明它们的代码段外是不可见的,称之为块 ...