最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿。

实例:

R eNetIt v0.1-1

data(ralu.site)
# Saturated spatial graph
sat.graph <- knn.graph(ralu.site, row.names=ralu.site@data[,"SiteName"])
head(sat.graph@data) # Distanced constrained spatial graph
dist.graph <- knn.graph(ralu.site, row.names=ralu.site@data[,"SiteName"], max.dist = 5000) par(mfrow=c(1,2))
plot(sat.graph, col="grey")
points(ralu.site, col="red", pch=20, cex=1.5)
box()
title("Saturated graph")
plot(dist.graph, col="grey")
points(ralu.site, col="red", pch=20, cex=1.5)
box()
title("Distance constrained graph")

  

  

一下来自wiki

The nearest neighbor graph (NNG) for a set of n objects P in a metric space (e.g., for a set of points in the plane with Euclidean distance) is a directed graph with P being its vertex set and with a directed edge from p to q whenever q is a nearest neighbor of p (i.e., the distance from p to q is no larger than from p to any other object from P).[1]

NNG图,在多维空间里我有很多个点,如上例,在17维空间里,我有31个点,一个常见的距离度量就是欧氏距离,NNG是有方向的,因为q是p的邻居并不代表p是q的邻居!

In many discussions, the directions of the edges are ignored and the NNG is defined as an ordinary (undirected) graph. However, the nearest neighbor relation is not a symmetric one, i.e., p from the definition is not necessarily a nearest neighbor for q.

In some discussions, in order to make the nearest neighbor for each object unique, the set P is indexed and in the case of a tie the object with, e.g., the largest index is taken for the nearest neighbor.[2]

The k-nearest neighbor graph (k-NNG) is a graph in which two vertices p and q are connected by an edge. if the distance between p and q is among the k-th smallest distances from p to other objects from P. The NNG is a special case of the k-NNG, namely, it is the 1-NNG. k-NNGs obey a separator theorem: they can be partitioned into two subgraphs of at most n(d + 1)/(d + 2) vertices each by the removal of O(k1/dn1 − 1/d) points.[3]

在k-NNG里,就不是最近邻了,而是考虑k-th,就是把k-th内的点都当做邻居。

Another special case is the (n − 1)-NNG. This graph is called the farthest neighbor graph (FNG).

如果k=n-1,那么就是FNG图。

In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case.

NNGs for points in the plane as well as in multidimensional spaces find applications, e.g., in data compressionmotion planning, and facilities location. In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly. Nearest neighbor graphs are also a subject of computational geometry.

Nearest neighbor graph | 近邻图的更多相关文章

  1. Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph

    MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...

  2. K Nearest Neighbor 算法

    文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...

  3. 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】

    [学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...

  4. K NEAREST NEIGHBOR 算法(knn)

    K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...

  5. 使用perf生成Flame Graph(火焰图)

      具体的步骤参见这里: <flame graph:图形化perf call stack数据的小工具>   使用SystemTap脚本制作火焰图,内存较少时,分配存储采样的数组可能失败,需 ...

  6. 当前数据库普遍使用wait-for graph等待图来进行死锁检测

    当前数据库普遍使用wait-for graph等待图来进行死锁检测 较超时机制,这是一种更主动的死锁检测方式,innodb引擎也采用wait-for graph SQL Server也使用wait-f ...

  7. Nearest Neighbor Search

    ## Nearest Neighbor Search ## Input file: standard input Output file: standard output Time limit: 1 ...

  8. Rikka with Graph(联通图取边,暴力)

    Rikka with Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

随机推荐

  1. Codeforces 584 - A/B/C/D/E - (Done)

    链接:https://codeforces.com/contest/584 A - Olesya and Rodion - [水] 题解:注意到 $t$ 的范围是 $[2,10]$,对于位数小于 $2 ...

  2. Gym 101775C - Traffic Light - [思维题]

    题目链接:http://codeforces.com/gym/101775/problem/C 题意: 给出 $N$ 个红绿灯,又给出 $N+1$ 个距离 $S_i = S_0,S_1, \cdots ...

  3. Web开发——HTML基础(图像、音频和视频内容)

    参考: 参考:HTML中的图像 参考:视频和音频内容 目录: 1.HTML中的图像 1.1 我们如何在网页上放置图像? (1)替代文字(alt) (2)宽度和高度 (3)图片标题 1.2 用图形和图形 ...

  4. Pandas的可视化操作(利用pandas得到图表)

    基本折线图 Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现. 举个例子 import pandas as pd import numpy a ...

  5. python基础(6)-深浅拷贝

    赋值 字符串和数字 # id()函数可以获取变量在内存中的地址标识 num1 = 2; num2 = 2; print(id(num1)) # result:8791124202560 print(i ...

  6. 【Assembly】NO.70.EBook.7.Assembly.1.001-【汇编语言 第3版 张爽】- 基础知识

    1.0.0 Summary Tittle:[Assembly]NO.70.EBook.7.Assembly.1.001-[汇编语言 第3版 张爽]- 基础知识 Style:Assembly Serie ...

  7. safari无法调试iphone提示“无可检查的应用程序”的解决方法

    iphone上打开safari,随便访问一个网站,mac上通过Safari的开发,我的iphone是可以看到的.如果打开APP,就提示“无可检查的应用程序”. 解决方法 使用XCode运行我们的App ...

  8. Git换行符是如何精确控制的

    Git换行符是如何精确控制的 Checkout Windows-style, commit Unix-style Git will convert LF to CRLF when checking o ...

  9. Kubernetes 网络改进的三项实践分享

    自研CNI IPAM插件 解决K8s功能问题 首先,在功能方面,Kubernetes 网络模型由于IP不固定,无法对IP资源进行精细管控,无法使用基于IP的监控和基于IP的安全策略,此外,一些IP发现 ...

  10. tomcat是怎么找到项目lib目录下的jar包的,求大神解答

    是通过java代码动态的修改classpath吗,和classloader有关系吗