Nearest neighbor graph | 近邻图
最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿。
实例:
R eNetIt v0.1-1
data(ralu.site)
# Saturated spatial graph
sat.graph <- knn.graph(ralu.site, row.names=ralu.site@data[,"SiteName"])
head(sat.graph@data) # Distanced constrained spatial graph
dist.graph <- knn.graph(ralu.site, row.names=ralu.site@data[,"SiteName"], max.dist = 5000) par(mfrow=c(1,2))
plot(sat.graph, col="grey")
points(ralu.site, col="red", pch=20, cex=1.5)
box()
title("Saturated graph")
plot(dist.graph, col="grey")
points(ralu.site, col="red", pch=20, cex=1.5)
box()
title("Distance constrained graph")
一下来自wiki
The nearest neighbor graph (NNG) for a set of n objects P in a metric space (e.g., for a set of points in the plane with Euclidean distance) is a directed graph with P being its vertex set and with a directed edge from p to q whenever q is a nearest neighbor of p (i.e., the distance from p to q is no larger than from p to any other object from P).[1]
NNG图,在多维空间里我有很多个点,如上例,在17维空间里,我有31个点,一个常见的距离度量就是欧氏距离,NNG是有方向的,因为q是p的邻居并不代表p是q的邻居!
In many discussions, the directions of the edges are ignored and the NNG is defined as an ordinary (undirected) graph. However, the nearest neighbor relation is not a symmetric one, i.e., p from the definition is not necessarily a nearest neighbor for q.
In some discussions, in order to make the nearest neighbor for each object unique, the set P is indexed and in the case of a tie the object with, e.g., the largest index is taken for the nearest neighbor.[2]
The k-nearest neighbor graph (k-NNG) is a graph in which two vertices p and q are connected by an edge. if the distance between p and q is among the k-th smallest distances from p to other objects from P. The NNG is a special case of the k-NNG, namely, it is the 1-NNG. k-NNGs obey a separator theorem: they can be partitioned into two subgraphs of at most n(d + 1)/(d + 2) vertices each by the removal of O(k1/dn1 − 1/d) points.[3]
在k-NNG里,就不是最近邻了,而是考虑k-th,就是把k-th内的点都当做邻居。
Another special case is the (n − 1)-NNG. This graph is called the farthest neighbor graph (FNG).
如果k=n-1,那么就是FNG图。
In theoretical discussions of algorithms a kind of general position is often assumed, namely, the nearest (k-nearest) neighbor is unique for each object. In implementations of the algorithms it is necessary to bear in mind that this is not always the case.
NNGs for points in the plane as well as in multidimensional spaces find applications, e.g., in data compression, motion planning, and facilities location. In statistical analysis, the nearest-neighbor chain algorithm based on following paths in this graph can be used to find hierarchical clusterings quickly. Nearest neighbor graphs are also a subject of computational geometry.
Nearest neighbor graph | 近邻图的更多相关文章
- Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- 使用perf生成Flame Graph(火焰图)
具体的步骤参见这里: <flame graph:图形化perf call stack数据的小工具> 使用SystemTap脚本制作火焰图,内存较少时,分配存储采样的数组可能失败,需 ...
- 当前数据库普遍使用wait-for graph等待图来进行死锁检测
当前数据库普遍使用wait-for graph等待图来进行死锁检测 较超时机制,这是一种更主动的死锁检测方式,innodb引擎也采用wait-for graph SQL Server也使用wait-f ...
- Nearest Neighbor Search
## Nearest Neighbor Search ## Input file: standard input Output file: standard output Time limit: 1 ...
- Rikka with Graph(联通图取边,暴力)
Rikka with Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法
1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...
随机推荐
- Gym 101981I - Magic Potion - [最大流][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem I]
题目链接:http://codeforces.com/gym/101981/attachments There are n heroes and m monsters living in an isl ...
- 基础SQL注入
预备知识对mysql数据库有一定了解:对基本的sql语句有所了解:对url编码有了解:空格=‘%20’,单引号=‘%27’,双引号=‘%22’,井号=‘%23’等 基本步骤1. 判断是什么类型注入,有 ...
- 20165317 java学习总结
20165317 java学习总结 每周作业链接汇总 预备作业1:https://www.cnblogs.com/ningxinyu/p/8341213.html 预备作业2:https://www. ...
- toolbar按钮添加图标
需要toolbar关联imagelist组件,imagelist组件添加需要的图片,在toolbar新建按钮,按钮中选择相应图表.
- 【托业】【新东方全真模拟】03~04-----P5~6
❤ customer satisfaction survey 客户满意度调查 ❤ lose + 宾语:be lost ❤ superior (在品质上)更好的 ❤ be entitled to ...
- [OpenCV]直线拟合
OpenCV实现了直线的拟合. CV_IMPL void cvFitLine( const CvArr* array, int dist, double param, double reps, dou ...
- Python Pyinstaller打包含pandas库的py文件遇到的坑
今天的主角依然是pyinstaller打包工具,为了让pyinstaller打包后exe文件不至过大,我们的py脚本文件引用库时尽可能只引用需要的部分,不要引用整个库,多使用“from *** imp ...
- iOS开发笔记错误集
错误类型列举 错误类型A:EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0) 错误类型B:EXC_BREAKPOINT (code=EXC_A ...
- eclipse添加spring boot 插件
在使用eclipse开发时,一般需要添加spring boot的管理插件,这样更方便我们开发,在写application.yml或properties配置的时候,也有相关的提示,而且还可以从配置文件中 ...
- Gis数据处理
几何投影和解析投影几何投影是将椭球面上的经纬线网投影到几何平面上,然后将几何面展为平面.几何投影可以分为方位投影.圆柱投影和圆锥投影.这三种投影纬线的形状不同.方位投影纬线的形状是同心圆:圆柱投影纬线 ...