A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5

Sample Output 1:

3
4
5

Sample Input 2:

5
1 3
1 4
2 5
3 4

Sample Output 2:

Error: 2 components

题目大意:如果是连通图,则求连通图中点Vi到点Vj所有路径中最长(包含多对)的并打印出所有Vi与Vj。如果是非连通图,则打印出有几个子图。用并查集判断是否是连通图,随后用搜索来求最长路。
#include<iostream>
#include<stdio.h>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
#define max 10002
int visit[max];
int a[max];
int N;
int distan[max];
vector<int>map[max];
int find(int x){
if(a[x]== x)return x;
find(a[x]);
}
void unio(int x,int y){
x = find(x);
y = find(y);
if(x != y){
a[x] = y;
}
}
int DFS(int key){
if(visit[key]==1)return 0;
visit[key]=1;
int i;
int sum = 0;
int m = map[key].size();
for(i=0;i<m;i++){
if(visit[map[key][i]]==0){
int tmp = DFS(map[key][i]);
if(sum < tmp){
sum = tmp;
}
}
}
return sum+1;
}
int main(){
scanf("%d",&N);
int i,j,t;
int s,d;
for(i=1;i<=N;i++){
a[i]=i;
}
for(i=1;i<N;i++){
scanf("%d%d",&s,&d);
unio(s,d);
map[s].push_back(d);
map[d].push_back(s);
}
int flag=0;
for(i=1;i<=N;i++){
if(a[i]==i){
flag++;
}
}
if(flag>1){
printf("Error: %d components",flag);
} else{
for(i=1;i<=N;i++){
memset(visit,0,sizeof(visit));
distan[i]=DFS(i);
}
int a=-1,b=0;
for(i=1;i<=N;i++){
if(distan[i]>a){
a=distan[i];
b=i;
}
}
for(i=1;i<=N;i++){
if(distan[i] == distan[b]){
printf("%d\n",i);
}
}
}
return 0;
}

  


1021. Deepest Root (25)的更多相关文章

  1. [PAT] 1021 Deepest Root (25)(25 分)

    1021 Deepest Root (25)(25 分)A graph which is connected and acyclic can be considered a tree. The hei ...

  2. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

  3. 1021. Deepest Root (25)——DFS+并查集

    http://pat.zju.edu.cn/contests/pat-a-practise/1021 无环连通图也可以视为一棵树,选定图中任意一点作为根,如果这时候整个树的深度最大,则称其为 deep ...

  4. 1021. Deepest Root (25) -并查集判树 -BFS求深度

    题目如下: A graph which is connected and acyclic can be considered a tree. The height of the tree depend ...

  5. 1021 Deepest Root (25)(25 point(s))

    problem A graph which is connected and acyclic can be considered a tree. The height of the tree depe ...

  6. 1021 Deepest Root (25 分)

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on t ...

  7. PAT (Advanced Level) 1021. Deepest Root (25)

    先并查集判断连通性,然后暴力每个点作为根节点判即可. #include<iostream> #include<cstring> #include<cmath> #i ...

  8. PAT甲题题解-1021. Deepest Root (25)-dfs+并查集

    dfs求最大层数并查集求连通个数 #include <iostream> #include <cstdio> #include <algorithm> #inclu ...

  9. 【PAT甲级】1021 Deepest Root (25 分)(暴力,DFS)

    题意: 输入一个正整数N(N<=10000),然后输入N-1条边,求使得这棵树深度最大的根节点,递增序输出.如果不是一棵树,输出这张图有几个部分. trick: 时间比较充裕数据可能也不是很极限 ...

随机推荐

  1. LINUX内核分析第七周学习总结

    LINUX内核分析第七周学习总结 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.c ...

  2. 数学建模-lingo使用

    1.安装启动,软件下载地址:http://pc.xzstatic.com/2017/06/LINGO14 .zip.此为免安装版,打开后双击Lingo11.exe即可启动软件. 2.示例:某商品单位成 ...

  3. article元素以及section

    <p>发表日期:<time pubdate="pubdate">2015/10/30</time></p> article元素有自己 ...

  4. Junit4测试用例

    一.题目简介 测试一元一次方程的求解 二.源码的github链接 https://github.com/liujing1994/test1 三.所设计的模块测试用例.测试结果截图   一元一次方程测试 ...

  5. 使用git命令创建分支到团队项目

    背景 在我们的团队中,我作为管理者,创建了一个叫HelloWorld的项目,大家各自在本地进行开发,将自己的工作贡献到我们的团队项目中.为了便于审核,我希望大家先将自己的贡献先放在属于自己的一个分支上 ...

  6. 小学四则运算APP 第一阶段冲刺

    需求分析 1.相关系统分析员向用户初步了解需求,然后用word列出要开发的系统的大功能模块,每个大功能模块有哪些小功能模块,对于有些需求比较明确相关的界面时,在这一步里面可以初步定义好少量的界面.[1 ...

  7. Caffe2的安装

    源码下载 首先下载caffe2的源码:https://github.com/caffe2/caffe2 网上都建议使用git命令下载,因为caffe2依赖了很多第三方模块,git会根据依赖自动下载第三 ...

  8. Java用JSoup组件提取asp.net webform开发网页的viewstate相关相关参数

    /** * 从页面中提取特定input的的Value * @param formparams * @param document * @param elementId */ private void ...

  9. Vue.directive注册指令

    指令定义函数提供了几个钩子函数(可选): vue指令的生命周期 bind: 只调用一次,指令第一次绑定到元素时调用,用这个钩子函数可以定义一个在绑定时执行一次的初始化动作. inserted: 被绑定 ...

  10. 如何判断一条记录什么字段被修改了 [问题点数:40分,结帖人bluesukeke]

    查询出来数据,在数据集编辑状态下,如何判断一条记录被修改了,哪些字段被修改了. 可用adoquery的Delta屬性...eg: ClientDataSet1.Delta... PS:POST前是準確 ...