莫比乌斯函数 51nod-1240(合数分解试除法)
就是输出n时,莫比乌斯函数的值。直接将n唯一分解即可。
思路:筛出105以内的素数,因为109开方,105就差不多。当一个大数还没有被1000个素数分解,那么这个数基本上可以认为是素数(为合数为小概率了)。使用欧拉筛筛出105以内的素数,然后枚举素数试除即可
ac代码:
#include<cstdio>
#include<cstring>
#define maxn int(1e5)
#define ll long long
int prime[maxn];
bool vis[maxn];
int Prime()
{
int cnt = ;
for (int i = ; i < maxn; ++i)
{
if (!vis[i])
{
prime[cnt++] = i;
}
for (int j = ; j <= cnt&&prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = ;
if (i%prime[j] == ){ break; }
}
}
return cnt;
}
int main()
{
int k=Prime();
int m = ;
ll n;
scanf("%lld", &n);
for (int i = ; i < k&&n!=; ++i)
{
if (n%prime[i]==)
{
int h = ;
while (n%prime[i] == ){ ++h; n /= prime[i]; }
if (h != ){ printf("0\n"); return ; }
m = -m;
}
}
if (n>)printf("%d\n", -m);
else printf("%d\n", m);
}
莫比乌斯函数 51nod-1240(合数分解试除法)的更多相关文章
- 51nod 1240 莫比乌斯函数
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...
- 51Nod 1240:莫比乌斯函数
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使 ...
- 51nod 1240 莫比乌斯函数【数论+莫比乌斯函数】
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用 ...
- HDU 1164 Eddy's research I( 试除法 & 筛法改造试除法 分解整数 )
链接:传送门 题意:给出一个整数 n ,输出整数 n 的分解成若干个素因子的方案 思路:经典的整数分解题目,这里采用试除法 和 用筛法改造后的试除法 对正整数 n 进行分解 方法一:试除法对正整数 n ...
- 51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- 51 Nod 1240 莫比乌斯函数
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使 ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
随机推荐
- Dependency Walker使用说明 转载
转载地址:http://blog.csdn.net/swort_177/article/details/5426848?reload 在Windows世界中,有无数块活动的大陆,它们都有一个共同的名字 ...
- httpclient请求服务的各种方法实例
<!--话不多说,直接上代码--> import com.csis.ConfigManagerimport com.csis.io.web.DefaultConfigItemimport ...
- Linux下编译、链接和装载
——<程序员的自我修养>读书笔记 编译过程 在Linux下使用GCC将源码编译成可执行文件的过程可以分解为4个步骤,分别是预处理(Prepressing).编译(Compilation). ...
- 最长子串(FZU2128)
最长子串 Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...
- Linux Centos下安装jdk
1.准备工作 https://www.cnblogs.com/dddyyy/p/9746942.html 上面这篇博客讲了如何安装linux 你想安装的jdk(对应版本的jdk) 连接Linux的软件 ...
- Jmeter进阶篇之逻辑控制器
最近,遇到了一个困扰很多人的问题.情景如下: 业务流程:登录一个网站,反复进行充值. 通常的做法是使用jmeter对登录和充值的接口进行反复的执行: 但是实现的方法却不能完美的贴合业务流程.并且,在进 ...
- Power BI 与 Azure Analysis Services 的数据关联:4、Power BI 连接到Azure Analysis Services 并展示
Power BI 与 Azure Analysis Services 的数据关联:4.Power BI 连接到Azure Analysis Services 过使用服务器名称别名,用户可以使用较短 ...
- B-树、B+树
B-树 用来在外部存储中组织数据. 严格来说,2-3树.2-3-4树都是B-树的特例:但B树更强调它的节点有很多个子节点,B-树中的节点可以有几十或几百个子节点. B-树也可以是查找树,也可以不是查找 ...
- Fiddler抓包使用教程-过滤
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/72929800 本文出自[赵彦军的博客] Fiddler抓包可以完成我们移动开发者的 ...
- MySQL8的注意点
最近使用MySQL8,发现两个问题,略记如下: 1. 新建用户无法使用JDBC或者Navicat等登陆,报错信息为 认证失败 ,原因为 新版 MySQL 认证插件变化(变为caching_sha2_p ...