莫比乌斯函数 51nod-1240(合数分解试除法)
就是输出n时,莫比乌斯函数的值。直接将n唯一分解即可。
思路:筛出105以内的素数,因为109开方,105就差不多。当一个大数还没有被1000个素数分解,那么这个数基本上可以认为是素数(为合数为小概率了)。使用欧拉筛筛出105以内的素数,然后枚举素数试除即可
ac代码:
#include<cstdio>
#include<cstring>
#define maxn int(1e5)
#define ll long long
int prime[maxn];
bool vis[maxn];
int Prime()
{
int cnt = ;
for (int i = ; i < maxn; ++i)
{
if (!vis[i])
{
prime[cnt++] = i;
}
for (int j = ; j <= cnt&&prime[j] * i < maxn; ++j)
{
vis[prime[j] * i] = ;
if (i%prime[j] == ){ break; }
}
}
return cnt;
}
int main()
{
int k=Prime();
int m = ;
ll n;
scanf("%lld", &n);
for (int i = ; i < k&&n!=; ++i)
{
if (n%prime[i]==)
{
int h = ;
while (n%prime[i] == ){ ++h; n /= prime[i]; }
if (h != ){ printf("0\n"); return ; }
m = -m;
}
}
if (n>)printf("%d\n", -m);
else printf("%d\n", m);
}
莫比乌斯函数 51nod-1240(合数分解试除法)的更多相关文章
- 51nod 1240 莫比乌斯函数
题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...
- 51Nod 1240:莫比乌斯函数
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使 ...
- 51nod 1240 莫比乌斯函数【数论+莫比乌斯函数】
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用 ...
- HDU 1164 Eddy's research I( 试除法 & 筛法改造试除法 分解整数 )
链接:传送门 题意:给出一个整数 n ,输出整数 n 的分解成若干个素因子的方案 思路:经典的整数分解题目,这里采用试除法 和 用筛法改造后的试除法 对正整数 n 进行分解 方法一:试除法对正整数 n ...
- 51nod 1244 莫比乌斯函数之和
题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
- 51 Nod 1240 莫比乌斯函数
1240 莫比乌斯函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使 ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)
[51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1Nμ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...
随机推荐
- ES6+ 开发 React 组件
在这里简要的说一下这些语言新特性对 React 应用的开发有什么影响,这些 ES6+ 特性使得 React 开发更简单更有趣. 类 迄今为止,最能体现我们使用 ES6+ 来编写 React 组件的就是 ...
- LINQ分页和排序,skip和Take 用法
LINQ分页和排序,skip和Take 用法 dbconn.BidRecord.OrderBy(p=>p.bid_id).ToList<BidRecord>().OrderBy(p ...
- [android] 手机卫士关闭自动更新
保存数据的四种方式,网络,广播提供者,SharedPreferences,数据库 获取SharedPreferences对象,通过getSharedPreferences()方法,参数:名称,模式 例 ...
- (5)Jquery1.8.3快速入门_层次选择器
一.Jquery的选择器: 层级选择器: 1.空格 div span div中的包含的所有span后代元素 2. > ...
- Windows 10 将MySQL5.5升级为MySQL5.7
最近想学习一下java.找到一个开源项目需要mysql5.7.11+ 升级 电脑上装的是MySQL 5.5,准备直接升级到最新版本的5.7,对于MySQL好像并没有直接升级到最新版本的功能,下载了Wi ...
- SPOJ GSS3 (动态dp)
题意 题目链接 Sol 这题可以动态dp做. 设\(f[i]\)表示以\(i\)为结尾的最大子段和,\(g[i]\)表示\(1-i\)的最大子段和 那么 \(f[i] = max(f[i - 1] + ...
- 通过url动态获取图片大小方法总结
很多时候再项目中,我们往往需要先获取图片的大小再加载图片,但是某些特定场景,如用过cocos2d-js的人都知道,在它那里只能按比例缩放大小,是无法设置指定大小的图片的,这就是cocos2d-js 的 ...
- Android--字符串和Drawable之间互相转化
//将字符串转化成Drawable public synchronized static Drawable StringToDrawable(String icon) { if (icon == nu ...
- Sqlserver精简安装选项
- Luncene介绍
1.Luncene介绍 案例:实现一个文件的搜索功能,通过关键字搜索文件,凡是文件名或文件内容包括关键字文件都需要找出来.还可以根据中文词语进行查询,并且需要支持多个条件查询.Lucene可以解决 数 ...