一、word2vec调参
 
./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1

  

一般来说,比较喜欢用cbow ,因为模型中 cbow有向量相加的运算。##保留意见

 
-cbow 0表示不使用cbow模型,默认为Skip-Gram模型
-size 表示词向量维数:经验是不超过1000,超过1000基本都没有效果,我感觉是可以取  sqrt(dict_size)/2 的样子,不过最好多试几个
-window 上下文窗口,是训练词向量的时候,取上下文的大小,感觉这个一般都是5比较好
 
-sample 表示采样参数,是一个经验忽视掉频率过高的词的参数,一般也用默认的就行。
-sampe指的是采样的阈值,如果一个词语在训练样本中出现的频率越大,那么就越会被采样。
 
-negative 表示负采样参数,每有一个正样本,选择几个负样本的参数,一般也是用默认的。
-binary为1指的是结果二进制存储,为0以文本形式进行存储。
上面这两个参数试过很多个,感觉就是默认的比较好用。

-hs 做不做层次的softmax,是1的时候效果比较好,但是训练会慢一点
-min-count 控制词典大小的参数,如果只想要高频词的话就设置高一点。

 

    架构:skip-gram(慢、对罕见字有利)vs CBOW(快)

·         训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利)

·         欠采样频繁词:可以提高结果的准确性和速度(适用范围1e-3到1e-5)

·         文本(window)大小:skip-gram通常在10附近,CBOW通常在5附近

二、LDA调参

1.文章

http://jmlr.org/proceedings/papers/v32/tang14.pdf

2.思路

1)lda模型(latent dirichlet distribution)调优,比如曾经有研究表明,直接把短文档(比如一个微博,一个查询)作为输入,不如先做预处理把这些短文章聚合成一些长文章(比如把同一作者的微博合一块)。

2)当我们选择的主题数目k和真实主题数目k’ 一致,或者主题-词分布区分度够高(欧式距离衡量下)的情况下,假如我们还满足文档长度的限制,log d 《= n 的, 那么, 随着n 和 d 增长,后验分布和真实分布之间的误差正比于 logn / n +logd / d。

3)当我们选择的主题数目k 大于真实主题数目k‘时,如果我们仍然满足 d》= log n, 那么误差正比于 (log n / n + logd / d) ^ (1/(2k –1))

4)

    1. 文档长度不能太短,至少是文档数目的log,所以对于太短的文档,我们必须把他们聚合

    2. 为了满足log d 《= n, 还有一个方法是降低d,但很可惜,最终误差大小正比于d,所以文档数量最好也多一点。

    3. 当我们选择的topic 数目k 大大超出于真实topic 数目 k‘ 时,可以从(5)的结果看到,也会减慢收敛速度,所以应该从比较小的topic数目开始,慢慢增加。

    4. 最好当然是我们能知道真正的主题数目k,这样可以避开上面的试探过程,但现实很难,另外一个可能的条件是topic之间差异大,比如每个文档可能的topic少,或者每个topic有一些特殊的词,比如一个topic是自然语言处理,另一个topic是图像处理,两个各有自己独特的词,如像素,语法树等等,这样我们就可以不用太担心试探过程。

    5. 当上面两种情况发生时,可以考虑设置小一点的alpha 和beta, 以减少迭代。

 

word2vec参数调整 及lda调参的更多相关文章

  1. xgboost的sklearn接口和原生接口参数详细说明及调参指点

    from xgboost import XGBClassifier XGBClassifier(max_depth=3,learning_rate=0.1,n_estimators=100,silen ...

  2. lightgbm的sklearn接口和原生接口参数详细说明及调参指点

    class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, ...

  3. DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化

    DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183   版权声明:本文为博主原创文章,遵循CC 4.0 BY ...

  4. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  5. rf调参小结

    转自http://www.cnblogs.com/pinard/p/6160412.html 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomF ...

  6. gbdt调参的小结

    关键部分转自http://www.cnblogs.com/pinard/p/6143927.html 第一次知道网格搜索这个方法,不知道在工业中是不是用这种方式 1.首先从步长和迭代次数入手,选择一个 ...

  7. 100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)

    本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随 ...

  8. XGBoost和LightGBM的参数以及调参

    一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...

  9. XGBoost 重要参数(调参使用)

    XGBoost 重要参数(调参使用) 数据比赛Kaggle,天池中最常见的就是XGBoost和LightGBM. 模型是在数据比赛中尤为重要的,但是实际上,在比赛的过程中,大部分朋友在模型上花的时间却 ...

随机推荐

  1. JAVA NIO Channel

    Basic:   多数通道都是链接到开发的文件描述符的.Channel类提供维持平台独立性的抽象过程.   通道是一种途径,访问和操作操作系统,缓冲区是数据操作点: Channel类继承结构图: 通过 ...

  2. MTU(Maximum transmission unit) 最大传输单元

    最大传输单元(Maximum transmission unit),以太网MTU为1500. 不同网络MTU如下: 如果最大报文数据大小(MSS)超过MTU,则会引起分片操作.   路径MTU: 网路 ...

  3. Eclipse调试Android App若选择“Use same device for future launches”就再也无法选择其他设备的问题

    在狂批了某供应商的多媒体控制App有多烂后,夸下海口自己要做一个也是分分钟的事.当然要做好不容易,要超过他们的烂软件还是有信心的.过程中遇到各种坑,其中之一如下 刚开始只使用一个平板进行调试,老是弹出 ...

  4. [Yii2.0] 以Yii 2.0风格加载自定义类或命名空间 [配置使用Yii2 autoloader]

    Yii 2.0最显著的特征之一就是引入了命名空间,因此对于自定义类的引入方式也同之前有所不同.这篇文章讨论一下如何利用Yii 2.0的自动加载机制,向系统中引入自定义类和命名空间.本文旨在抛砖引玉,如 ...

  5. spring 事务回滚

    1.遇到的问题 当我们一个方法里面有多个数据库保存操作的时候,中间的数据库操作发生的错误.伪代码如下: public method() { Dao1.save(Person1); Dao1.save( ...

  6. Ubuntu Server 设置PPTP客户端连接

    安装PPTP客户端 apt-get install pptp-linux 设置连接账号信息 sudo vim /etc/ppp/chap-secrets 其中$login_name是登录名:$pass ...

  7. An error occurred during the installation of assembly 'Microsoft.VC90.CRT……的问题

    有一段时间没有用到AnkhSvn了,今天工作需要安装了一下.结果安装到一半就无法继续了,提示An error occurred during the installation of assembly ...

  8. Android LayoutInflater.inflate(int resource, ViewGroup root, boolean attachToRoot)的参数理解

    方法inflate(int resource, ViewGroup root, boolean attachToRoot) 中 第一个参数传入布局的资源ID,生成fragment视图,第二个参数是视图 ...

  9. web前端(实习生)之 “百度一面”

    2016.3.18,星期五.我经历了我的第一次面试. 不得不说,百度是一个高效的公司,在短短一下午之间我就直接经历了一面二面,说没有压力是假的,还记得在中途等待二面的时候我至少有一小段的时间脑子是卡带 ...

  10. [bzoj1269][AHOI2006文本编辑器editor] (splay模版题 or pb_ds [rope]大法)

    Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目标,可可对“文本编辑器”做了一个抽象的定义:   文本:由0个或 ...