传送门


这题除了暴力踩标程和正解卡常数以外是道很好的题目

首先看到我们要求的东西与\(Fibonacci\)有关,考虑矩阵乘法进行维护。又看到\(n \leq 30000\),这告诉我们正解算法其实比较暴力,又因为直接在线解决看起来就比较麻烦,所以考虑离线询问,莫队解决。

我们设斐波那契数列的转移矩阵为\(T = \left( \begin{array}{ccc} 0 & 1 \\ 1 & 1 \end{array} \right)\)

先将\(a\)离散化,用一棵线段树维护矩阵运算。那么我们需要支持的是:插入一个数并使比它大的数对应的\(Fibonacci\)数向后移一个。这个可以在线段树的对应节点打上一个\(T\)的标记,表示向右转移一个,经过这个节点时pushdown下去。删除一个数就打上它的逆矩阵的标记。总复杂度为\(O(n\sqrt{n}logn)\)

Tips:如果你TLE在了第35个点,请尽力卡常,简化取模过程、避免不必要运算(详见代码中pushup过程)

#include<bits/stdc++.h>
//This code is written by Itst
#define lch (x << 1)
#define rch (x << 1 | 1)
#define mid ((l + r) >> 1)
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c)){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    while(isdigit(c)){
        a = (a << 3) + (a << 1) + (c ^ '0');
        c = getchar();
    }
    return f ? -a : a;
}

const int MAXN = 3e4 + 7;
int step = 0 , N , M , Q , T , cnt , num[MAXN] , lsh[MAXN] , times[MAXN] , ans[MAXN];
struct query{
    int ind , l , r;
    bool operator <(const query a)const{
        return l / T == a.l / T ? ((l / T) & 1 ? r > a.r : r < a.r) : l < a.l;
    }
}now[MAXN];
struct matrix{
    int a[2][2];
    int* operator [](int x){return a[x];}
    matrix(bool f = 1){if(f) memset(a , 0 , sizeof(a));}
    matrix operator *(matrix b){
        matrix c;
        for(int i = 0 ; i < 2 ; ++i)
            for(int j = 0 ; j < 2 ; ++j)
                for(int k = 0 ; k < 2 ; ++k)
                    c[i][j] += a[i][k] * b[k][j];
        for(int i = 0 ; i < 2 ; ++i)
            for(int j = 0 ; j < 2 ; ++j)
                c[i][j] %= M;
        return c;
    }
    matrix operator *(int b){
        matrix c(0);
        for(int i = 0 ; i < 2 ; ++i)
            for(int j = 0 ; j < 2 ; ++j)
                c[i][j] = a[i][j] * b;
        return c;
    }
    matrix operator +(matrix b){
        matrix c(0);
        for(int i = 0 ; i < 2 ; ++i)
            for(int j = 0 ; j < 2 ; ++j)
                c[i][j] = (a[i][j] + b[i][j]) % M;
        return c;
    }
    bool operator ==(matrix b){
        for(int i = 0 ; i < 2 ; ++i)
            for(int j = 0 ; j < 2 ; ++j)
                if(a[i][j] != b[i][j])
                    return 0;
        return 1;
    }
    bool operator !=(matrix b){
        return !(*this == b);
    }
}F , E , G , a , b;
struct node{
    matrix ans , mark;
    int times;
}Tree[MAXN << 2];

inline void mark(int x , const matrix mark){
    Tree[x].mark = Tree[x].mark * mark;
    Tree[x].ans = Tree[x].ans * mark;
}

inline void pushdown(int x){
    if(Tree[x].mark != E){
        mark(lch , Tree[x].mark);
        mark(rch , Tree[x].mark);
        Tree[x].mark = E;
    }
}

inline void pushup(int x){
    a = Tree[lch].ans;
    b = Tree[rch].ans;
    if(Tree[lch].times != 1)
        a = a * Tree[lch].times;
    if(Tree[rch].times != 1)
        b = b * Tree[rch].times;
    Tree[x].ans = a + b;
}

void insert(int x , int l , int r , int tar){
    if(l == r){
        Tree[x].times = lsh[tar];
        return;
    }
    pushdown(x);
    if(mid >= tar){
        insert(lch , l , mid , tar);
        mark(rch , F);
    }
    else
        insert(rch , mid + 1 , r , tar);
    pushup(x);
}

void erase(int x , int l , int r , int tar){
    if(l == r){
        Tree[x].times = 0;
        return;
    }
    pushdown(x);
    if(mid >= tar){
        erase(lch , l , mid , tar);
        mark(rch , G);
    }
    else
        erase(rch , mid + 1 , r , tar);
    pushup(x);
}

void init(int x , int l , int r){
    Tree[x].times = l != r;
    Tree[x].mark = E;
    if(l != r){
        init(lch , l , mid);
        init(rch , mid + 1 , r);
    }
    else
        Tree[x].ans = F;
}

inline void add(int a){
    if(!times[a]++)
        insert(1 , 1 , cnt , a);
    ++step;
}

inline void del(int a){
    if(!--times[a])
        erase(1 , 1 , cnt , a);
    ++step;
}

int main(){
    N = read();
    M = read();
    T = sqrt(N);
    E[0][0] = E[1][1] = F[0][1] = F[1][0] = F[1][1] = G[1][0] = G[0][1] = 1;
    G[0][0] = M - 1;
    for(int i = 1 ; i <= N ; ++i)
        num[i] = lsh[i] = read();
    sort(lsh + 1 , lsh + N + 1);
    cnt = unique(lsh + 1 , lsh + N + 1) - lsh - 1;
    for(int i = 1 ; i <= N ; ++i)
        num[i] = lower_bound(lsh + 1 , lsh + cnt + 1 , num[i]) - lsh;
    for(int i = 1 ; i <= cnt ; ++i)
        lsh[i] %= M;
    Q = read();
    for(int i = 1 ; i <= Q ; ++i){
        now[i].ind = i;
        now[i].l = read();
        now[i].r = read();
    }
    sort(now + 1 , now + Q + 1);
    int L = 1 , R = 0;
    init(1 , 1 , cnt);
    for(int i = 1 ; i <= Q ; ++i){
        while(R < now[i].r)
            add(num[++R]);
        while(L > now[i].l)
            add(num[--L]);
        while(R > now[i].r)
            del(num[R--]);
        while(L < now[i].l)
            del(num[L++]);
        ans[now[i].ind] = Tree[1].ans[0][1] * Tree[1].times % M;
    }
    cerr << step << endl;
    for(int i = 1 ; i <= Q ; ++i)
        printf("%d\n" , ans[i]);
    return 0;
}

CF633H Fibonacci-ish II 莫队、线段树、矩阵乘法的更多相关文章

  1. 【CF633H】Fibonacci-ish II 莫队+线段树

    [CF633H]Fibonacci-ish II 题意:给你一个长度为n的序列$a_i$.m个询问,每个询问形如l,r:将[l,r]中的所有$a_i$排序并去重,设得到的新数列为$b_i$,求$b_1 ...

  2. Manthan, Codefest 16 H. Fibonacci-ish II 大力出奇迹 莫队 线段树 矩阵

    H. Fibonacci-ish II 题目连接: http://codeforces.com/contest/633/problem/H Description Yash is finally ti ...

  3. Codeforces 666E E - Forensic Examination SA + 莫队 + 线段树

    E - Forensic Examination 我也不知道为什么这个复杂度能过, 而且跑得还挺快, 数据比较水? 在sa上二分出上下界, 然后莫队 + 线段树维护区间众数. #include< ...

  4. 洛谷P3246 序列 [HNOI2016] 莫队/线段树+扫描线

    正解:莫队/线段树+扫描线 解题报告: 传送门! 似乎是有两种方法的,,,所以分别港下好了QAQ 第一种,莫队 看到这种询问很多区间之类的就会自然而然地想到莫队趴?然后仔细思考一下,发现复杂度似乎是欧 ...

  5. [hdoj6483][莫队+线段树/ST]

    A Sequence Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. [bzoj4358]permu:莫队+线段树/回滚莫队

    这道题是几天前水过去的,现在快没印象了,水一发. 首先我们看到它让求解的是最长的值域 连续段长度,很好. 然后就想到了山海经,但但是我还没有做. 然后又想到了很久以前的一次考试的T3旅馆hotel(我 ...

  7. BZOJ 4129 树上带修莫队+线段树

    思路: 可以先做做BZOJ3585 是序列上的mex 考虑莫队的转移 如果当前数字出现过 线段树上把它置成1 对于询问 二分ans 线段树上查 0到ans的和 是不是ans+1 本题就是把它搞到了序列 ...

  8. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  9. LOJ2980 THUSC2017大魔法师(线段树+矩阵乘法)

    线段树每个节点维护(A,B,C,len)向量,操作即是将其乘上一个矩阵. #include<iostream> #include<cstdio> #include<cma ...

  10. hdu 5068(线段树+矩阵乘法)

    矩阵乘法来进行所有路径的运算, 线段树来查询修改. 关键还是矩阵乘法的结合律. Harry And Math Teacher Time Limit: 5000/3000 MS (Java/Others ...

随机推荐

  1. 【读书笔记】iOS-自定义 URL Scheme 完全指南

    iPhone / iOS SDK 最酷的特性之一就是应用将其自身”绑定”到一个自定义 URL scheme 上,该 scheme 用于从浏览器或其他应用中启动本应用.   注册自定义 URL Sche ...

  2. SuperMap iServer 扩展/JAVA API 系列博客整理

    转载:http://blog.csdn.net/supermapsupport/article/details/70158940 SuperMap iServer为广大用户提供了整套 SDK,应用开发 ...

  3. React.js 新手教程

    正如你能从标题猜到的,这篇文章的目标是给那些有很少编程经验的读者的.比如,像我这样的人:因为迄今为止,我才探索了编程世界6个月.所以,这将是一篇新手村教程! 你只需要拥有对 HTML 和 CSS 的理 ...

  4. Djanggo ORM操作

    Django ORM那些相关操作  一般操作 看专业的官网文档:https://docs.djangoproject.com/en/1.11/ref/models/querysets/,做专业的程序员 ...

  5. 【PAT】B1074 宇宙无敌加法器(20 分)

    打一开始做就听人说这个难,吓得我把它放到了最后做,不过如此嘛. 这里说说样例的坑点 1.最后结果可能高位有0:例如样例结果07201 2.结果会进位, 3.有可能结果是0,(此处取决于你的输出方式) ...

  6. Kibana中的Coordinate Map地图报索引错误的问题

    今天做地图定位展示,展示的是ApacheWeb服务器的访问日志文件中的来源IP.但是中间出现了报错环节,说是索引不能匹配到geo_point类型,实在是不懂这是在说什么,后来在网站找了方法就解决了.主 ...

  7. Class doesn't contain any JAX-RS annotated method

    项目中使用了Jersey RESTful风格的注解 , 根据错误提示就知道了 , 在类中没有带注解的方法 ,所以只要在方法上添加 @path() 注解就行了,至少要有一个方法带有Jersey注解

  8. VRS待解决的问题——原因及解决方案

    1.持续滤波失败(查看文档) 通过查看文档及代码 2.GAL卫星数为0的网元及原因 3.判断发的是否是单个基站(网元未固定),多个用户进行测试 4.网元固定率(采用文件输出) 5.是否频繁重复初始化 ...

  9. 建立标准编码规则(四)-C#编码规范分类及实现

    1 现实中的问题 在任何一个公司,每个程序员编写的习惯可能都是不一样的,大到命名空间,小到变量的名字.甚至,我们去github,里面的大牛每个开源的项目的命名规则可能都不一样. 我们通常会遇到下面的问 ...

  10. python3的C3算法

    一.基本概念 1. mro序列 MRO是一个有序列表L,在类被创建时就计算出来. 通用计算公式为: mro(Child(Base1,Base2)) = [ Child ] + merge( mro(B ...