Liblinear and Libsvm-rank训练数据的bash代码:

for j in  "amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5"
do
echo -e "SVC bias $j "
./train -s 3 -c 0.03125 -v 5 -B 1 -C $j.train
./predict $j.test $j.train.model SVC1.$j.out.txt
echo -e "SVOR bias $j "
./train -s 8 -c 0.03125 -v 5 -B 1 -m 2 -C $j.train
./predict $j.test $j.train.model SVOR1.$j.out.txt
echo -e "REDSVM bias $j "
./train -s 8 -c 0.03125 -v 5 -B 1 -m 1 -C $j.train
./predict $j.test $j.train.model REDSVM1.$j.out.txt
echo -e "SVMOP bias $j "
./train -s 10 -c 0.03125 -v 5 -B 1 -m 2 -C $j.train
./predict $j.test $j.train.model SVMOP1.$j.out.txt
echo -e "NPSVOR bias $j "
./train -s 9 -c 0.03125 -v 5 -B 1 -C $j.train
./predict $j.test $j.train.model NPSVOR1.$j.out.txt
echo -e "SVR bias $j "
./train -s 13 -c 0.03125 -p 0.1 -B 1 -v 5 -C $j.train
./predict $j.test $j.train.model SVR1.$j.out.txt
done data=("amazon_mp3" "video_surveillance" "tablets" "mobilephone" "cameras" "TripAdvisor" "chunyu" "Treebank" "MovieReview" "yelp_review" "LargeMovie" "Electronics_5" "Health_and_Personal_Care_5" "Apps_for_Android_5" "Home_and_Kitchen_5")
redsvm=(0.5 1 0.5 0.5 1 0.5 2 0.25 8 0.25 0.25 1 0.5 1 1)
svor=(1 1 0.5 0.5 1 0.5 2 2 4 0.25 0.125 1 0.25 1 1)
for k in {0..14}
do
j=${data[$k]}
cr=${redsvm[$k]}
cs=${svor[$k]}
echo -e "SVOR bias $j "
./svm-train -s 6 -t 0 -c $cs $j.train
./svm-predict $j.test $j.train.model SVOR1.$j.out.txt
echo -e "REDSVM bias $j "
./svm-train -s 5 -t 0 -c $cr $j.train
./svm-predict $j.test $j.train.model REDSVM1.$j.out.txt
done

Liblinear and Libsvm-rank训练数据的bash代码的更多相关文章

  1. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  2. 代码备份:处理 SUN397 的代码,将其分为 80% 训练数据 以及 20% 的测试数据

    处理SUN397 的代码,将其分为80% 训练数据以及20% 的测试数据 2016-07-27 1 %% Code for Process SUN397 Scene Classification 2 ...

  3. python numpy 三行代码打乱训练数据

    今天发现一个用 numpy 随机化数组的技巧. 需求 我有两个数组( ndarray ):train_datasets 和 train_labels.其中,train_datasets 的每一行和 t ...

  4. tesnorflow实现N个epoch训练数据读取的办法

    https://blog.csdn.net/lujiandong1/article/details/53991373 方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读 ...

  5. tensorflow读取训练数据方法

    1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4] ...

  6. caffe 中如何打乱训练数据

    第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不 ...

  7. pytorch:EDSR 生成训练数据的方法

    Pytorch:EDSR 生成训练数据的方法 引言 Winter is coming 正文 pytorch提供的DataLoader 是用来包装你的数据的工具. 所以你要将自己的 (numpy arr ...

  8. 迁移学习算法之TrAdaBoost ——本质上是在用不同分布的训练数据,训练出一个分类器

    迁移学习算法之TrAdaBoost from: https://blog.csdn.net/Augster/article/details/53039489 TradaBoost算法由来已久,具体算法 ...

  9. Tensorflow 从文件中载入训练数据

    本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一.用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3  ...

随机推荐

  1. springmvc.xml 中 <url-pattern></url-pattern>节点详解

    1.  先来上段常见的代码 <!-- MVC Servlet --> <servlet> <servlet-name>springServlet</servl ...

  2. 创建视图sql

    create   view   视图名称   as     查询sql语句create    view   test2         as      select   *  from   sc te ...

  3. Oracle数据库分组排序

    select row_number() over(partition by oea03 order by oea02 desc) num,oea01,oea02,oea03 from oea_file ...

  4. cocos2d JS-(JavaScript) 冒泡排序

    思想: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有的元素重复以上的步骤,除了最 ...

  5. “流式”前端构建工具——gulp.js 简介

    Grunt 一直是前端领域构建工具(任务运行器或许更准确一些,因为前端构建只是此类工具的一部分用途)的王者,然而它也不是毫无缺陷的,近期风头正劲的 gulp.js 隐隐有取而代之的态势.那么,究竟是什 ...

  6. java中的key事件监听机制

    package com.at221; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import javax.sw ...

  7. NFC读写电子便签总结

    编写NFC程序的基本步骤 1)设置权限,限制Android版本.安装的设备: 1 2 3 4 <uses-sdk android:minSdkVersion="14"/> ...

  8. JavaScript 示例

    JavaScript 示例 <html lang="en"> <head> <meta charset="UTF-8"> & ...

  9. JS设计模式(5)发布订阅模式

    什么是发布订阅模式(观察者模式)? 定义:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新. 主要解决:一个对象状态改变给其他对象通知的问题,而且 ...

  10. Guitar Pro特殊符号讲解之附点音符

    今天要讲解Guitar Pro里附点音符的作用,附点音符也是大家在编曲做谱的时候,经常需要使用的一个符号,它在Guitar Pro分为附点和双附点. 附点:记在音符符头右边的圆点,用以增长音符的时值. ...