题目大意:维护一个有 N 个数组成的序列,支持查询区间元素和、区间元素向下取整的开方操作。

题解:由于序列中维护的数最大不超过整数的范围,而对于整数范围内的数来说,一个数在开方 5 次及以上时,结果不是 0 就是 1。

因此,可以在维护块内元素大小之和的同时,也维护一个标记,即:若块内所有元素大小均是 0 或 1 时,标记为 1,否则为 0。这样即使对于多次修改,每一个整块被修改的次数也不超过约 5 次,复杂度可以承受。

代码如下

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=5e4+10;
const int maxb=1000; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m,a[maxn];
struct node{int l,r;ll sum;bool tag;}b[maxb];
int tot,bl[maxn];
void make_block(){
tot=sqrt(n);
for(int i=1;i<=tot;i++)b[i].l=b[i-1].r+1,b[i].r=i*tot;
if(b[tot].r<n)++tot,b[tot].l=b[tot-1].r+1,b[tot].r=n;
for(int i=1;i<=tot;i++)for(int j=b[i].l;j<=b[i].r;j++)bl[j]=i,b[i].sum+=a[j];
}
void modify(int l,int r){
int x=bl[l],y=bl[r];
if(x==y){
for(int i=l;i<=r;i++)b[x].sum-=a[i],a[i]=sqrt(a[i]),b[x].sum+=a[i];
}else{
for(int i=x+1;i<=y-1;i++){
if(b[i].tag)continue;
b[i].tag=1,b[i].sum=0;
for(int j=b[i].l;j<=b[i].r;j++){
a[j]=sqrt(a[j]),b[i].sum+=a[j];
if(a[j]>1)b[i].tag=0;
}
}
for(int i=l;i<=b[x].r;i++)b[x].sum-=a[i],a[i]=sqrt(a[i]),b[x].sum+=a[i];
for(int i=b[y].l;i<=r;i++)b[y].sum-=a[i],a[i]=sqrt(a[i]),b[y].sum+=a[i];
}
}
ll query(int l,int r){
int x=bl[l],y=bl[r];ll res=0;
if(x==y){
for(int i=l;i<=r;i++)res+=a[i];
}else{
for(int i=x+1;i<=y-1;i++)res+=b[i].sum;
for(int i=l;i<=b[x].r;i++)res+=a[i];
for(int i=b[y].l;i<=r;i++)res+=a[i];
}
return res;
} void read_and_parse(){
n=m=read();
for(int i=1;i<=n;i++)a[i]=read();
make_block();
}
void solve(){
while(m--){
int opt=read(),l=read(),r=read(),c=read();
if(opt==0)modify(l,r);
else if(opt==1)printf("%lld\n",query(l,r));
}
}
int main(){
read_and_parse();
solve();
return 0;
}

【LOJ#6281】数列分块5的更多相关文章

  1. LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)

    #6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5   题目描述 给出 ...

  2. LOJ 6281 数列分块入门 5

    简化版题意 给出一个长为n的数列,以及n个操作,操作涉及区间开方(每个数都向下取整),区间求和,保证所有数都为有符号32位正整数. N<=50000 Solution 首先我们先思考: 一个有符 ...

  3. LOJ.6281.数列分块入门5(分块 区间开方)

    题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...

  4. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  5. LOJ 6277-6280 数列分块入门 1-4

    数列分块是莫队分块的前置技能,练习一下 1.loj6277 给出一个长为n的数列,以及n个操作,操作涉及区间加法,单点查值. 直接分块+tag即可 #include <bits/stdc++.h ...

  6. LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)

    #6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给 ...

  7. LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)

    #6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  8. LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)

    #6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2   题目描述 给出 ...

  9. LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)

    #6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1   题目描述 给出 ...

  10. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

随机推荐

  1. 【nodejs】让nodejs像后端mvc框架(asp.net mvc)一样处理请求--控制器和处理函数的注册篇(4/8)【controller+action】

    文章目录 前情概要 前边的文章把一些基本的前置任务都完成了.接下就是比较重要的处理函数action是如何自动发现和注册的拉,也就是入口函数RouteHandler(也是我们的第一个express中间件 ...

  2. Centos下SVN环境部署记录

    大多数情况下,我们日常工作中用的版本控制系统都会选择分布式的Git,它相比于集中式的SVN有很多优势.但是有些项目软件基于自身限制,可能只支持SVN做工程同步.废话就不多说了,下面记录下SVN的部署和 ...

  3. LVM基础详细说明及动态扩容lvm逻辑卷的操作记录

    LVM概念:---------------------------------------------------------------------------------------------- ...

  4. Centos6下关于系统用户密码规则-运维笔记

    随着linux使用的普遍,对于linux用户以及系统的安全要求越来越高,而用户密码复杂程度是系统安全性高低的首要体现.因此如何对linux下用户的密码进行规则限制,以保证用户必须使用复杂的密码,杜绝用 ...

  5. week3个人作业

    一.必应词典的bug 必应词典占用资源过多,作为后台软件,必应词典的内存占用是其他的四五倍 适应能力弱,经常与其他软件冲突,兼容性差 二.分析 根据我的分析,团队人数6人左右,计算机大学毕业生,并有专 ...

  6. Week 1 工程文档

    计算器——工程文档 一.输入与格式 1.数据规模 本文档的输入基于如下的要求: (1)既然是小学生,我们假设他们不会计算超过10亿的数字. (2)既然是出考试题,那么也不会出超过10亿道题目. 也就是 ...

  7. Linux实践:ELF文件格式分析

    标签(空格分隔): 20135321余佳源 一.基础知识 ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文件(目 ...

  8. 毕设之c#多线程学习(官方+转载)

    官方文档,原址:打开 如何:对 Windows 窗体控件进行线程安全调用   使用多线程提高 Windows 窗体应用程序的性能时,必须注意以线程安全方式调用控件. 示例 访问 Windows 窗体控 ...

  9. POI (Apache POI)

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 基本功能 编辑 结构: HSSF - 提供读写Mi ...

  10. git查看分支图

    git log --graph --decorate --oneline --simplify-by-decoration --all