众所周知,anchor_box控制了回归框的大小,我们有时候检测的是大物体或小物体时,需要调整回归框的大小的时候,得改一下anchor_box。
基于rgb公开的py-faster-rcnn修改anchor_box的步骤有一下几步:
1、修改py-faster-rcnn-my/lib/rpn下的三个文件:
1)generate_anchors.py。将以下两行修改成你想要的模样,然后执行这个文件,记下
执行后得到的结果的len。记anchor_box的个数。默认设置得到的是9个。因为是3个scale,3个ratios,从而得到的anchor_box的尺寸一共9种。
#def generate_anchors(base_size=6, ratios=[0.5, 1, 2],
#                     scales=2**np.arange(3, 6)):

2)修改anchor_target_layer.py中的这一行:
anchor_scales = layer_params.get('scales', (8, 16, 32))
这个(8,16,32)是根据1)中scales生成的,2**np.arange(3, 6)即2的3 4 5次方,
3)修改proposal_layer.py中的这一行:
anchor_scales = layer_params.get('scales', (8, 16, 32))
这个与2)类似。

2、修改train.prototxt和test.prototxt。这两个文件的修改方法类似,我们就写其中一个:

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    #num_output: 18   # 2(bg/fg) * 9(anchors)
#根据你的anchor_box的个数修改。如果你第一步得到的尺寸是8个,那么这里就是16
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}

layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    #num_output: 36   # 4 * 9(anchors)
#同上,修改为anchors的尺寸个数的4倍。
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: 'rpn_cls_prob_reshape'
  type: 'Reshape'
  bottom: 'rpn_cls_prob'
  top: 'rpn_cls_prob_reshape'
  #reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
#修改dim的第二个为 2×anchor_box的个数
 
}

修改好后,开训,应该不会报错。记得要清楚上次训练是保存的一些cache。
如果报错了,请留言与我联系。

这个只是一些比较机械化的总结,希望大家通过这个为切入点,不断捋熟源码。才能随心所欲的实现自己的算法。

目标检测框架py-faster-rcnn修改anchor_box的更多相关文章

  1. 第三十一节,目标检测算法之 Faster R-CNN算法详解

    Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...

  2. (五)目标检测算法之Faster R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  3. 目标检测算法之Faster R-CNN算法详解

    Fast R-CNN存在的问题:选择性搜索,非常耗时. 解决:加入一个提取边缘的神经网络,将候选框的选取交给神经网络. 在Fast R-CNN中引入Region Proposal Network(RP ...

  4. 目标检测复习之Faster RCNN系列

    目标检测之faster rcnn系列 paper blogs1: 一文读懂Faster RCNN Faster RCNN理论合集 code: mmdetection Faster rcnn总结: 网络 ...

  5. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN

    基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...

  6. 目标检测方法总结(R-CNN系列)

    目标检测方法系列--R-CNN, SPP, Fast R-CNN, Faster R-CNN, YOLO, SSD 目录 相关背景 从传统方法到R-CNN 从R-CNN到SPP Fast R-CNN ...

  7. 第三十节,目标检测算法之Fast R-CNN算法详解

    Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...

  8. CVPR2020|3D-VID:基于LiDar Video信息的3D目标检测框架

    作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/p ...

  9. py faster rcnn+ 1080Ti+cudnn5.0

    看了py-faster-rcnn上的issue,原来大家都遇到各种问题. 我要好好琢磨一下,看看到底怎么样才能更好地把GPU卡发挥出来.最近真是和GPU卡较上劲了. 上午解决了g++的问题不是. 然后 ...

随机推荐

  1. go web framework gin 启动流程分析

    最主要的package : gin 最主要的struct: Engine Engine 是整个framework的实例,它包含了muxer, middleware, configuration set ...

  2. thinkphp获取后台所有控制器和action

    <?phpnamespace Admin\Controller;use Think\Controller;class AuthorController extends PublicControl ...

  3. 学习Hibenate随笔

    1.Hibenate是一个开放源代码的对象关系映射框架,它对JDBC进行了轻量级的对象封装,将pojo类与数据库表建立映射关系,是一个全自动orm框架,Hibenate可以自动生成sql语句,自动执行 ...

  4. vue 15分钟倒计时

    HTML: <span>{{minute}}:{{second}}</span> script: 一          二 // 倒计时 num(n) { return n & ...

  5. 19/03/30Python笔记

    一.三元运算 a = 1 if (条件) else a = 2 #如果条件成立,a = 1,否则a = 2 二.文件的处理 1.读取 f = open("user.txt",&qu ...

  6. PythonStudy——赋值运算符 Assignment operator

    eg: num = 10 num += 1 # 等价于 num = num + 1 => 11 print(num) 特殊操作: 1.链式赋值 a = b = num print(a, b, n ...

  7. zombodb 索引创建

      索引的创建是zombodb 的核心,我们都是需要先创建table,然后创建索引,创建的时候我们可以指定es 集群的地址,同时可能需要使用 一些地址api(比如数据直接存储在es 中而不是pg 中) ...

  8. 依据Axis2官网的高速入门英文文档总结

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/ksdb0468473/article/details/29918027 首先在Eclipse中创建一 ...

  9. day51 django第二天 django初识

    一.模块渲染  jinja2 实现简单的字符串替换(动态页面) 1.下载 pip install jinja2 示例 : html文件中 <!DOCTYPE html> <html ...

  10. grafna与饼状图

    官网: https://grafana.com/plugins/grafana-piechart-panel/installation            https://grafana.com/p ...