# Enter your network definition here.
# Use Shift+Enter to update the visualization.name: "VGG_ILSVRC_16_layers"
input: "data"
input_dim: 16
input_dim: 3
input_dim: 224
input_dim: 224
layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8"
name: "fc8"
type: INNER_PRODUCT
inner_product_param {
num_output: 1000
}
}
layers {
bottom: "fc8"
top: "prob"
name: "prob"
type: SOFTMAX
}

vgg16原始的protocol的更多相关文章

  1. 【C++】 网络编程 01

    趁着计算机网络这门课布置了课程设计,学习下网络编程. 系统:Ubuntu 14.01... 1. 关于Socket(套接字) 1.1 套接字是存在于运输层和应用层间的抽象层,通过它来区分不同应用程序进 ...

  2. 使用Puppeteer进行数据抓取(四)——图片下载

    大多数情况下,图片获取并不是很困难的事情,获取图片的url,然后模拟浏览器请求即可.但是,有的时候这种方法往往无法生效,常见的情形有: 动态图片,每次获取都是一个新的,例如图片验证码,重新获取时是一个 ...

  3. ESP32 IDF 获取天气信息

    一.注册天气获取账号 我使用的知心天气,没有获取天气账号的小伙伴可以去注册一下,知心天气官网:https://www.seniverse.com/ 取得天气获取的API后,可以直接在浏览器中访问测试一 ...

  4. Linux Socket 原始套接字编程

    对于linux网络编程来说,可以简单的分为标准套接字编程和原始套接字编程,标准套接字主要就是应用层数据的传输,原始套接字则是可以获得不止是应用层的其他层不同协议的数据.与标准套接字相区别的主要是要开发 ...

  5. Bittorrent Protocol Specification v1.0 中文

    翻译:小马哥 日期:2004-5-22 BitTorrent 是一种分发文件的协议.它通过URL来识别内容,并且可以无缝的和web进行交互.它基于HTTP协议,它的优势是:如果有多个下载者并发的下载同 ...

  6. 005.TCP--拼接TCP头部IP头部,实现TCP三次握手的第一步(Linux,原始套接字)

    一.目的: 自己拼接IP头,TCP头,计算效验和,将生成的报文用原始套接字发送出去. 若使用tcpdump能监听有对方服务器的包回应,则证明TCP报文是正确的! 二.数据结构: TCP首部结构图: s ...

  7. 004.UDP--拼接UDP数据包,构造ip头和udp头通信(使用原始套接字)

    一.大致流程: 建立一个client端,一个server端,自己构建IP头和UDP头,写入数据(hello,world!)后通过原始套接字(SOCK_RAW)将包发出去. server端收到数据后,打 ...

  8. linux原始套接字(3)-构造IP_TCP发送与接收

    一.概述                                                    tcp报文封装在ip报文中,创建tcp的原始套接字如下: sockfd = socket ...

  9. linux原始套接字(1)-arp请求与接收

    一.概述                                                   以太网的arp数据包结构: arp结构op操作参数:1为请求,2为应答. 常用的数据结构如 ...

随机推荐

  1. 【旧文章搬运】Windows句柄表格式

    原文发表于百度空间,2009-02-28========================================================================== 句柄是Wi ...

  2. Flink架构及其工作原理

    目录 System Architecture Data Transfer in Flink Event Time Processing State Management Checkpoints, Sa ...

  3. git status -s 的表达式的读法

     1  2  读法  解决方案  ??    未被追踪  git add -A 或git add 文件路径  A    新添加文件 注:??被add后的状态  OK,等待commit.  M    已 ...

  4. (水题)洛谷 - P1618 - 三连击(升级版)

    https://www.luogu.org/problemnew/show/P1618 枚举所有的A,最多 $A_9^3$ ,然后生成B和C(先判断是不是能够生成),判断有没有重复数字(比之前那个优雅 ...

  5. Codeforces - 346A - Alice and Bob - 简单数论

    http://codeforces.com/problemset/problem/346/A 观察了一下,猜测和他们的最大公因数有关,除以最大公因数前后结果是不会变的. 那么怎么证明一定是有n轮呢?我 ...

  6. iOS开发检测是否开启定位、是否允许消息推送等权限

    1.iOS开发检测是否开启定位: 需要导入: #import <CoreLocation/CoreLocation.h> 代码如下: + (void)openLocationService ...

  7. poj2893 M*N puzzle 【n*m数码问题小结】By cellur925

    题目传送门 这个问题是来源于lydrainbowcat老师书上讲排序的一个扩展.当时讲的是奇数码问题,其实这种问题有两种问法:一种局面能否到另一种局面.到达目标局面的最小步数. 本文部分内容引用于ly ...

  8. Oracle数据库创建表空间及用户授权

    /*分为四步 */ /*第1步:创建临时表空间 */ create temporary tablespace test_temp tempfile 'E:\app\Administrator\orad ...

  9. Jquery | 基础 | 导航条在项目中的应用

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. UVA - 1658 Admiral

    3. C - Admiral 题意:给定v(3<=v<=1000)个节点,e(3<=e<=10000)条边的又向加权图,求1->v的两条不相交的路径,使得权和最小. 思路 ...