vgg16原始的protocol
# Enter your network definition here.
# Use Shift+Enter to update the visualization.name: "VGG_ILSVRC_16_layers"
input: "data"
input_dim: 16
input_dim: 3
input_dim: 224
input_dim: 224
layers {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: RELU
}
layers {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: CONVOLUTION
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: RELU
}
layers {
bottom: "conv1_2"
top: "pool1"
name: "pool1"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: RELU
}
layers {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: CONVOLUTION
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: RELU
}
layers {
bottom: "conv2_2"
top: "pool2"
name: "pool2"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: RELU
}
layers {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: RELU
}
layers {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: CONVOLUTION
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: RELU
}
layers {
bottom: "conv3_3"
top: "pool3"
name: "pool3"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: RELU
}
layers {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: RELU
}
layers {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: RELU
}
layers {
bottom: "conv4_3"
top: "pool4"
name: "pool4"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: RELU
}
layers {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: RELU
}
layers {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: CONVOLUTION
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
}
layers {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: RELU
}
layers {
bottom: "conv5_3"
top: "pool5"
name: "pool5"
type: POOLING
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layers {
bottom: "pool5"
top: "fc6"
name: "fc6"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc6"
top: "fc6"
name: "relu6"
type: RELU
}
layers {
bottom: "fc6"
top: "fc6"
name: "drop6"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc6"
top: "fc7"
name: "fc7"
type: INNER_PRODUCT
inner_product_param {
num_output: 4096
}
}
layers {
bottom: "fc7"
top: "fc7"
name: "relu7"
type: RELU
}
layers {
bottom: "fc7"
top: "fc7"
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
}
layers {
bottom: "fc7"
top: "fc8"
name: "fc8"
type: INNER_PRODUCT
inner_product_param {
num_output: 1000
}
}
layers {
bottom: "fc8"
top: "prob"
name: "prob"
type: SOFTMAX
}
vgg16原始的protocol的更多相关文章
- 【C++】 网络编程 01
趁着计算机网络这门课布置了课程设计,学习下网络编程. 系统:Ubuntu 14.01... 1. 关于Socket(套接字) 1.1 套接字是存在于运输层和应用层间的抽象层,通过它来区分不同应用程序进 ...
- 使用Puppeteer进行数据抓取(四)——图片下载
大多数情况下,图片获取并不是很困难的事情,获取图片的url,然后模拟浏览器请求即可.但是,有的时候这种方法往往无法生效,常见的情形有: 动态图片,每次获取都是一个新的,例如图片验证码,重新获取时是一个 ...
- ESP32 IDF 获取天气信息
一.注册天气获取账号 我使用的知心天气,没有获取天气账号的小伙伴可以去注册一下,知心天气官网:https://www.seniverse.com/ 取得天气获取的API后,可以直接在浏览器中访问测试一 ...
- Linux Socket 原始套接字编程
对于linux网络编程来说,可以简单的分为标准套接字编程和原始套接字编程,标准套接字主要就是应用层数据的传输,原始套接字则是可以获得不止是应用层的其他层不同协议的数据.与标准套接字相区别的主要是要开发 ...
- Bittorrent Protocol Specification v1.0 中文
翻译:小马哥 日期:2004-5-22 BitTorrent 是一种分发文件的协议.它通过URL来识别内容,并且可以无缝的和web进行交互.它基于HTTP协议,它的优势是:如果有多个下载者并发的下载同 ...
- 005.TCP--拼接TCP头部IP头部,实现TCP三次握手的第一步(Linux,原始套接字)
一.目的: 自己拼接IP头,TCP头,计算效验和,将生成的报文用原始套接字发送出去. 若使用tcpdump能监听有对方服务器的包回应,则证明TCP报文是正确的! 二.数据结构: TCP首部结构图: s ...
- 004.UDP--拼接UDP数据包,构造ip头和udp头通信(使用原始套接字)
一.大致流程: 建立一个client端,一个server端,自己构建IP头和UDP头,写入数据(hello,world!)后通过原始套接字(SOCK_RAW)将包发出去. server端收到数据后,打 ...
- linux原始套接字(3)-构造IP_TCP发送与接收
一.概述 tcp报文封装在ip报文中,创建tcp的原始套接字如下: sockfd = socket ...
- linux原始套接字(1)-arp请求与接收
一.概述 以太网的arp数据包结构: arp结构op操作参数:1为请求,2为应答. 常用的数据结构如 ...
随机推荐
- 879C
贪心 题目看错了...还以为是从操作序列中选5个...然后半个小时没了... 我们把每位分别用0和1带入,看看返回值是什么,然后分类讨论.千万不用特判!!!之前忘了删了就fst... #include ...
- Oracle Function INSTR
INSTR(string,subString,position,ocurrence)查找字符串位置 解释: string:字符串 subString:要查找的子字符串 p ...
- SDUT2161:Simple Game(NIM博弈+巴什博弈)
传送门 题意 n堆石子,每次可以取一堆至三堆任意非零石子数,取完者赢,问最后谁能赢 分析 以前我们做过NIM博弈是对一堆进行操作,现在换成了三堆,其实对于n堆都一样一堆的情况 如果最后二进制每位数的1 ...
- js的NaN变量
js中,我们经常在parseInt函数的时候遇到NaN变量,这个变量到底是什么呢? w3c上这样解释: NaN 属性是代表非数字值的特殊值.该属性用于指示某个值不是数字.可以把 Number 对象设置 ...
- WPF DataGrid foreground 绑定问题
初学WPF , 希望对DataGrid 中所属的一个Column名下的值的颜色动态修改 <DataGridTextColumn Header="隐含回购利率(%)" Bin ...
- PWA之push服务
转载: https://www.jishux.com/p/c5735af96c39bd4a https://www.jianshu.com/p/9970a9340a2d 系列文章参考:https:// ...
- Eclipse显示空白符,及使用google代码格式化
启动Eclipse,打开Preferences对话框.菜单“window”-“Preferences”. 找到Text Editors,勾选show whitespace characters,如图: ...
- django 相关问题
和数据库的连接 session的实现 django app开发步骤 python环境准备 数据库安装 model定义 url mapping定义 view定义 template定义 如何查看数据库里的 ...
- 导Excel数据表
需要把EXcel转换格式:
- P1967 货车运输 未完成
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #inclu ...