题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法。

析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m)。

然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p)。

然后再根据费马小定理就能做了。

代码如下:

第一种:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10005;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
LL exgcd(LL a,LL b,LL &x,LL &y){LL d = a;if(b!=0){d=exgcd(b,a%b,y,x);y-=(a/b)*x;}else{x=1;y=0;}return d;}
LL mod_inverse(LL a,LL m){LL x,y;exgcd(a,m,x,y);return (m+x%m)%m; }
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL fact[100005]; LL mod_fact(LL n, LL p, LL &e){
e = 0;
if(!n) return 1;
LL res = mod_fact(n / p, p, e);
e += n / p;
if(n / p % 2 != 0) return res * (p - fact[n%p]) % p;
return res * fact[n%p] % p;
} LL mod_comb(LL n, LL k, LL p){
if(n < 0 || k < 0 || n < k) return 0;
LL e1, e2, e3;
LL a1 = mod_fact(n, p, e1);
LL a2 = mod_fact(k, p, e2);
LL a3 = mod_fact(n-k, p, e3);
if(e1 > e2+e3) return 0;
return a1 * mod_inverse(a2*a3%p, p) % p;
} int main(){
fact[0] = 1;
int T; cin >> T;
while(T--){
LL p, m, n;
scanf("%I64d %I64d %I64d", &n, &m, &p);
for(int i = 1; i < p; ++i) fact[i] = fact[i-1] * (LL)i % p;
printf("%I64d\n", mod_comb(n+m, m, p));
}
return 0;
}

第二种:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10005;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL fact[100005];
LL p;
LL quick_pow(LL a, LL b){
LL ans = 1LL;
a %= p;
while(b){
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans;
} LL C(LL n, LL m){
if(n < m) return 0;
return fact[n] * quick_pow(fact[m]*fact[n-m], p-2) % p;
} LL lucas(LL n, LL m){
if(!m) return 1LL;
return C(n%p, m%p) * lucas(n/p, m/p) % p;
} int main(){
fact[0] = 1;
int T; cin >> T;
while(T--){
LL m, n;
scanf("%I64d %I64d %I64d", &n, &m, &p);
for(int i = 1; i < p; ++i) fact[i] = fact[i-1] * (LL)i % p;
printf("%I64d\n", lucas(n+m, m));
}
return 0;
}

第三种:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <unordered_map>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10005;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL p;
LL quick_pow(LL a, LL b){
LL ans = 1LL;
a %= p;
while(b){
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans;
} LL C(LL n, LL m){
if(n < m) return 0;
LL a = 1, b = 1;
while(m){
a = a * n % p;
b = b * m % p;
--m; --n;
}
return a * quick_pow(b, p-2) % p;
} LL lucas(LL n, LL m){
if(!m) return 1LL;
return C(n%p, m%p) * lucas(n/p, m/p) % p;
} int main(){
int T; cin >> T;
while(T--){
LL m, n;
scanf("%I64d %I64d %I64d", &n, &m, &p);
printf("%I64d\n", lucas(n+m, m));
}
return 0;
}

HDU 3037 Saving Beans (数论,Lucas定理)的更多相关文章

  1. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  2. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  6. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  7. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  9. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. BZOJ4580: [Usaco2016 Open]248

    n<=248个数字,可以进行这样的操作:将相邻两个相同的数字合并成这个数字+1,求最大能合成多少. f(i,j)--区间i到j能合成的最大值,f(i,j)=max(f(i,k)+1),f(i,k ...

  2. js82:CSS的Style,image的重定位,getElementById,getElementsByTagName,location.href

    原文发布时间为:2008-11-10 -- 来源于本人的百度文章 [由搬家工具导入] <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Tran ...

  3. PAT (Advanced Level) 1035. Password (20)

    简单题. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> ...

  4. IDEA下使用protobuf2(java)

    目录 一.介绍 二.特点 三.结构 四.选择版本 五.Intellij IDEA中使用Protobuf 1.下载个protoc.exe 2.编辑个.proto文件 3.将.proto文件转成Java类 ...

  5. Java模拟斗地主(实现大小排序)

    import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Li ...

  6. Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现

    /** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节 ...

  7. cocos2d-x CCSrollView 源代码,可循环的SrollView代码

    项目须要.写一个类似于iPhone上面时钟选择的可拉动式循环选择列表,通过集成CCScrollView并更改部分代码.实现了该功能. 假设想充分了解代码,请先阅读源码分析http://blog.csd ...

  8. 【CODEFORCES】 C. Dreamoon and Strings

    C. Dreamoon and Strings time limit per test 1 second memory limit per test 256 megabytes input stand ...

  9. [LeetCode][Java] Remove Duplicates from Sorted List II

    题意: Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct  ...

  10. STM32的精确延时

    /*---------------------------------------------------------- 文件名:systick.c 文件描写叙述:sysTick 系统滴答时钟1us中 ...