参考:https://www.cnblogs.com/neighthorn/p/6705785.html

并不是黑白染色而是三色染色(还有四色的,不过是一个意思



仔细观察一下不合法情况,可以发现都是特殊边两边有格子并且两个黑格子都在的时候黄蓝不能同在,所以(黄---黑)(黑---蓝)(黑---黑)都是最大权闭合子图中的依赖边

直接按照模型建就行,把黄蓝当成黑白染色。

……但是为什么不能用struct代替map呢QAQ

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
const int N=100005,mv[2][3][2]={-1,0,1,0,0,1,-1,0,1,0,0,-1},inf=1e9;
int c,r,n,s,t,le[N],h[N],cnt=1;
vector<int>v[N];
// struct que
// {
// int x,y;
// que(int X=0,int Y=0)
// {
// x=X,y=Y;
// }
// bool operator < (const que &a) const
// {
// return x>a.x;
// }
// };
// map<que,que>mp;
map< pair<int,int>,pair<int,int> > mp;
struct qwe
{
int ne,to,va;
}e[N*20];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
int bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
c=read(),r=read(),n=read();
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
int y=read(),x=read(),w=read();
// mp[que(x,y)]=que(i,w);
// v[x].push_back(y);
mp[make_pair(x,y)]=make_pair(i,w);
v[x].push_back(y);
}
for(int i=1;i<=r;i++)
sort(v[i].begin(),v[i].end());
for(int i=1;i<=r;i++)
for(int j=0;j<v[i].size();j++)
{
int x=i,y=v[i][j];
// if((x&1)&&y%4==1)
// {
// if(j<v[i].size()-1&&v[i][j+1]==y+1)
// ins(mp[que(x,y)].x,mp[que(x,y+1)].x,min(mp[que(x,y)].y,mp[que(x,y+1)].y));
// }
// else if((x&1)&&y%4==2)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// }
// else if((x&1)==0&&y%4==0)
// {
// if(j>0&&v[i][j-1]==y-1)
// ins(mp[que(x,y)].x,mp[que(x,y-1)].x,min(mp[que(x,y)].y,mp[que(x,y-1)].y));
// }
// else if((x&1)==0&&y%4==3)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// }
// else if(((x+y)&1)&&(x&1))
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else if((x&1)&&((x+y)&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
// else if(((x+y)&1)&&(x&1)==0)
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
// ins(mp[que(x,y)].x,mp[que(x+mv[1][k][0],y+mv[1][k][1])].x,inf);
// ins(s,mp[que(x,y)].x,mp[que(x,y)].y);
// }
// else
// {
// for(int k=0;k<3;k++)
// if(mp.find(que(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
// ins(mp[que(x+mv[0][k][0],y+mv[0][k][1])].x,mp[que(x,y)].x,inf);
// ins(mp[que(x,y)].x,t,mp[que(x,y)].y);
// }
if((x&1)&&y%4==1)
{
if(j<v[i].size()-1&&v[i][j+1]==y+1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y+1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y+1)].second));
}
else if((x&1)&&y%4==2)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
}
else if((x&1)==0&&y%4==0)
{
if(j>0&&v[i][j-1]==y-1)
ins(mp[make_pair(x,y)].first,mp[make_pair(x,y-1)].first,min(mp[make_pair(x,y)].second,mp[make_pair(x,y-1)].second));
}
else if((x&1)==0&&y%4==3)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
}
else if(((x+y)&1)&&(x&1))
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else if((x&1)&&((x+y)&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
else if(((x+y)&1)&&(x&1)==0)
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[1][k][0],y+mv[1][k][1]))!=mp.end())
ins(mp[make_pair(x,y)].first,mp[make_pair(x+mv[1][k][0],y+mv[1][k][1])].first,inf);
ins(s,mp[make_pair(x,y)].first,mp[make_pair(x,y)].second);
}
else
{
for(int k=0; k<3; k++)
if(mp.find(make_pair(x+mv[0][k][0],y+mv[0][k][1]))!=mp.end())
ins(mp[make_pair(x+mv[0][k][0],y+mv[0][k][1])].first,mp[make_pair(x,y)].first,inf);
ins(mp[make_pair(x,y)].first,t,mp[make_pair(x,y)].second);
}
}
printf("%d\n",dinic());
return 0;
}

bzoj 4823: [Cqoi2017]老C的方块【最大权闭合子图】的更多相关文章

  1. bzoj 4823: [Cqoi2017]老C的方块 [最小割]

    4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...

  2. bzoj 4823 [Cqoi2017]老C的方块——网络流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...

  3. BZOJ 4823: [Cqoi2017]老C的方块

    分析: 我觉得我的网络流白学了...QAQ... 其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了... 看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信 ...

  4. BZOJ 4823 [Cqoi2017]老C的方块 ——网络流

    lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...

  5. BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)

    BZOJ 最大密度子图. 二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\). 选一条边就必须选两个点,所以可以转成最大权闭合子图.边有\(1\)的正权,点有\(x\)的负 ...

  6. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  7. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  8. bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】

    一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...

  9. bzoj4823: [Cqoi2017]老C的方块(最小割)

    4823: [Cqoi2017]老C的方块 题目:传送门 题解: 毒瘤题ORZ.... 太菜了看出来是最小割啥边都不会建...狂%大佬强强强   黑白染色?不!是四个色一起染,四层图跑最小割... 很 ...

随机推荐

  1. 前端学习之-- JavaScript

    JavaScript笔记 参考:http://www.cnblogs.com/wupeiqi/articles/5602773.html javaScript是一门独立的语言,游览器都具有js解释器 ...

  2. HDU 6397 组合数学+容斥 母函数

    Character Encoding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

  3. POJ 1470 Closest Common Ancestors【LCA Tarjan】

    题目链接: http://poj.org/problem?id=1470 题意: 给定若干有向边,构成有根数,给定若干查询,求每个查询的结点的LCA出现次数. 分析: 还是很裸的tarjan的LCA. ...

  4. 【小记事】解除端口占用(Windows)

    开发中有时会因为端口占用而导致起项目时报错(如下图),这时候只要解除端口占用即可. 解除端口占用: 1.打开cmd(win+r),查看端口占用情况 netstat -ano | findstr 端口号 ...

  5. Topcoder 658 650 point

    Topcoder 658 div2 500 加强版 不过给了<=20,暴力肯定不行. 然后想DP方程,先二分可能需要的最大次数mid; 然后根据 mid 构造 DP方程. 假设x[i]需要 x个 ...

  6. C# 9.0新特性

    CandidateFeaturesForCSharp9 看到标题,是不是认为我把标题写错了?是的,C# 8.0还未正式发布,在官网它的最新版本还是Preview 5,通往C#9的漫长道路却已经开始.前 ...

  7. [BLE--Physical Layer]

    简述 BLE的物理层,可能做IC或板极硬件RF測试的会比較关注. 是偏硬件层面的. 频率带宽和信道分配 BLE工作于2.4 GHz ISM频段2400-2483.5 MHz,ISM频段是公用的,不须要 ...

  8. C\C++中strcat()函数、sprintf函数

    http://blog.csdn.net/smf0504/article/details/52055971 http://c.biancheng.net/cpp/html/295.html

  9. hdoj 3351 Seinfeld 【栈的简单应用】

    Seinfeld Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  10. C语言必会面试题(3、耶稣有13个门徒,当中有一个就是出卖耶稣的叛徒,请用排除法找出这位叛徒:13人围坐一圈,从第一个開始报号:1,2,3,1,2,3...。凡是报到“3”就退出圈子,...)

    3.耶稣有13个门徒.当中有一个就是出卖耶稣的叛徒,请用排除法找出这位叛徒:13人围坐一圈,从第一个開始报号:1.2,3.1,2,3.... 凡是报到"3"就退出圈子.最后留在圈子 ...