数独就要DLX,不然不乐意。

数独的DLX构造:9*9个点每一个点有9种选择,这构成了DLX的729行,每行、列、阵有限制,均为9行(/列/阵),然后每行(/列/阵)都有九种数的情况。于是就有了3*9*9列。可是由于一个位置仅仅能选一个,所以又有9*9列,每列连接一个点的九种选数情况。

终于有4*9*9=324列,9*9*9=729行。

处理:

有些点已经有数了,可是这并不重要,我们仅仅须要给这个点加上一个行,为它已经选的数。而不要把9种情况都加上,这样在有精确覆盖的情况下(即有解),第四部分的某列在纵向就仅仅连接一个节点,显然这个节点是必选的,所以不会出错(当然你要是依旧给这个有值节点在DLX中加9行的话。那我也没招,不要问我为什么错,好吧你不会这么傻吧?)。

而其他没有初始值的数独点,自然就加旧行了没疑问吧?

说一个跟空间复杂度相关的事。就是一行有且仅有4个节点。分别在行、列、阵、位置这四部分的列中,那么总节点数(不算辅助节点)就应该最多是729*4。而实际上标准数独都是有唯一解的,所以须要的节点将远远小于这个数。

再说说时间复杂度:由于我们能够为DLX加一个优化。就是每次选一个列中节点最少的列继续DLX的过程,所以我们尽管保留了已经有值的节点,可是实际上最開始就选择了它们,而若数独有解。这也是必然选择的。所以并不会出现由于层数过多而导致回溯过度而TLE的情况,也就是说它还是非常快的。当然。强迫症神马的我也管不了。你要是乐意把已赋值点删掉我也不拦着,但不像上一篇代码了。你要这么写的话,我并不会给你提供代码支持。

事实上这么写最重要的原因就是:代。码!好!

写!

好吧,我把我好写好读的代码贴上来吧!提示:要读代码先看define!事实上这道题的define非常easy。并没有一些恶心人的for循环define,你要是认为读着恶心一定是你的问题了。

贴代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 800
#define M 400
#define NN 5000
#define inf 0x3f3f3f3f #define Li_Sdk 3
#define Gi_Sdk 9
#define Su_Sdk 81
using namespace std;
char TS[N];
struct DLX
{
int elist,eline;
int id[Gi_Sdk+1][Gi_Sdk+1][Gi_Sdk+1];
int eid[4][Gi_Sdk][Gi_Sdk];
bool map[M][N]; int U[NN],D[NN],L[NN],R[NN],C[NN],V[NN];
int H[N],T[M],cnt;
int ans[NN];
bool visit[M],vist[M]; inline void init()
{
int i,j,k,_i,_j;
for(i=1;i<=Gi_Sdk;i++)
for(j=1;j<=Gi_Sdk;j++)
for(k=1;k<=Gi_Sdk;k++)
id[i][j][k]=++eline;
for(i=1;i<=Gi_Sdk;i++)/*行*/
{
for(j=1;j<=Gi_Sdk;j++)/*数*/
{
int A=eid[0][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*列*/
{
int B=id[i][k][j];
map[A][B]=1;
}
}
}
for(i=1;i<=Gi_Sdk;i++)/*列*/
{
for(j=1;j<=Gi_Sdk;j++)/*数*/
{
int A=eid[1][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*行*/
{
int B=id[k][i][j];
map[A][B]=1;
}
}
}
for(i=0;i<Li_Sdk;i++)for(j=0;j<Li_Sdk;j++)/*九宫格*/
{
for(k=1;k<=Gi_Sdk;k++)/*数*/
{
int A=eid[2][i*Li_Sdk+j+1][k]=++elist;
for(_i=1;_i<=Li_Sdk;_i++)for(_j=1;_j<=Li_Sdk;_j++)/*格内点*/
{
int B=id[i*Li_Sdk+_i][j*Li_Sdk+_j][k];
map[A][B]=1;
}
}
}
for(i=1;i<=Gi_Sdk;i++)for(j=1;j<=Gi_Sdk;j++)/*点的位置*/
{
int A=eid[3][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*点的9个数*/
{
int B=id[i][j][k];
map[A][B]=1;
}
}
/* for(j=1;j<=eline;j++)
{
for(i=1;i<=elist;i++)
{
printf("%d",map[i][j]);
}
puts("");
}
*/ /*本题的数独是正常数独,所以有下面固定信息。*/
/*合计eline即DLX的行有9*9*9=729行,即每一个位置的九种数字选择。*/
/*合计elist即DLX的列有4*9*9=324列。即行、列、九宫格、位置的4种精确覆盖*/
}
inline void clear()
{
cnt=0;
memset(U,0,sizeof(U));
memset(D,0,sizeof(D));
memset(L,0,sizeof(L));
memset(R,0,sizeof(R));
memset(C,0,sizeof(C));
memset(H,0,sizeof(H));
memset(T,0,sizeof(T));
memset(ans,0,sizeof(ans));
memset(vist,0,sizeof(vist));
memset(visit,0,sizeof(visit));
}
inline void newnode(int x,int y)
{
C[++cnt]=y;V[cnt]=x;T[y]++; if(!H[x])H[x]=L[cnt]=R[cnt]=cnt;
else L[cnt]=H[x],R[cnt]=R[H[x]];
R[H[x]]=L[R[H[x]]]=cnt,H[x]=cnt; U[cnt]=U[y],D[cnt]=y;
U[y]=D[U[y]]=cnt;
}
inline void remove(int x)
{
for(int i=D[x];i!=x;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
T[C[j]]--;
}
}
L[R[x]]=L[x];
R[L[x]]=R[x];
}
inline void resume(int x)
{
for(int i=U[x];i!=x;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
{
U[D[j]]=j;
D[U[j]]=j;
T[C[j]]++;
}
}
L[R[x]]=x;
R[L[x]]=x;
}
inline void build()
{
clear();
int i,j,k;
cnt=4*Su_Sdk;
for(i=1;i<=cnt;i++)
{
U[i]=D[i]=i;
L[i]=L[0],R[i]=0;
L[0]=R[L[0]]=i;
}
for(i=0;i<Gi_Sdk;i++)for(j=0;j<Gi_Sdk;j++)
{
int get=i*Gi_Sdk+j;
int alp=TS[get]-'.';
if(!alp)
{
for(k=get*Gi_Sdk+1;k<=get*Gi_Sdk+Gi_Sdk;k++)
for(int temp=1;temp<=elist;temp++)
if(map[temp][k])newnode(k,temp);
}
else
{
k=get*Gi_Sdk+TS[get]-'0';
for(int temp=1;temp<=elist;temp++)
if(map[temp][k])newnode(k,temp);
}
}
}
inline bool dfs()
{
if(!R[0])return true;
int S=R[0],W=T[S],i,j;
for(i=R[S];i;i=R[i])if(T[i]<W)
{
W=T[i];
S=i;
}
remove(S);
for(i=D[S];i!=S;i=D[i])
{
ans[(V[i]-1)/9]=(V[i]-1)%9+1;
for(j=R[i];j!=i;j=R[j])remove(C[j]);
if(dfs())return true;
for(j=L[i];j!=i;j=L[j])resume(C[j]);
}
resume(S);
return false;
}
inline void ret(){for(int i=0;i<Su_Sdk;i++)printf("%d",ans[i]);}
}dlx;
int main()
{
// freopen("test.in","r",stdin);
// freopen("my.out","w",stdout);
int n,m;
dlx.init();
while(scanf("%s",TS),TS[0]!='e')
{
dlx.build();
dlx.dfs();
dlx.ret();
puts("");
}
// fclose(stdin);
// fclose(stdout);
return 0;
}

【POJ3074】Sudoku DLX(Dancing Links)的更多相关文章

  1. 【POJ3740】Easy Finding DLX(Dancing Links)精确覆盖问题

    题意:多组数据,每组数据给你几行数,要求选出当中几行.使得每一列都有且仅有一个1.询问是可不可行,或者说能不能找出来. 题解:1.暴搜.2.DLX(Dancing links). 本文写的是DLX. ...

  2. 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题

    精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...

  3. [转] 舞蹈链(Dancing Links)——求解精确覆盖问题

    转载自:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个 ...

  4. 算法实践——舞蹈链(Dancing Links)算法求解数独

    在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancin ...

  5. 转载 - 算法实践——舞蹈链(Dancing Links)算法求解数独

    出处:http://www.cnblogs.com/grenet/p/3163550.html 在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dan ...

  6. 转载 - 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题

    出处:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 ...

  7. 算法帖——用舞蹈链算法(Dancing Links)求解俄罗斯方块覆盖问题

    问题的提出:如下图,用13块俄罗斯方块覆盖8*8的正方形.如何用计算机求解? 解决这类问题的方法不一而足,然而核心思想都是穷举法,不同的方法仅仅是对穷举法进行了优化 用13块不同形状的俄罗斯方块(每个 ...

  8. 洛谷P3369 【模板】普通平衡树(Treap/SBT)

    洛谷P3369 [模板]普通平衡树(Treap/SBT) 平衡树,一种其妙的数据结构 题目传送门 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 插入x数 删除 ...

  9. 【CF235C】Cyclical Quest(后缀自动机)

    [CF235C]Cyclical Quest(后缀自动机) 题面 洛谷 题解 大致翻译: 给定一个串 然后若干组询问 每次也给定一个串 这个串可以旋转(就是把最后一位丢到最前面这样子) 问这个串以及其 ...

随机推荐

  1. JS简单路由实现

    说一下前端路由实现的简要原理,以 hash 形式(也可以使用 History API 来处理)为例, 当 url 的 hash 发生变化时,触发 hashchange 注册的回调,回调中去进行不同的操 ...

  2. html5 页面音频

    1. html5 样式 <audio class="audioleft download" id="audVoice" type="audio/ ...

  3. Beta冲刺提交-星期四

    这个作业属于哪个课程 软件工程 这个作业要求在哪里 <作业要求的链接> 团队名称 唱跳RAP编程 这个作业的目标 1.进行每日例会,每个成员汇报自己今天完成     的工作,PM安排明天的 ...

  4. acedssget F 方式

    ads_point p1; ads_point p2; acedGetPoint(NULL, _T("\n插入第一点"), p1); acedGetPoint(p1, _T(&qu ...

  5. CAD实现文档坐标到视区坐标的转换(com接口Delphi语言)

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  6. ThinkPHP---thinkphp完善站内信功能

    [一]收件箱 分析 控制器:EmailController.class.php 方法:recBox(全称receive box收件箱) 模板文件:recBox.html 分步操作: 第一步:创建方法r ...

  7. scala学习(3)-----wordcount【sparksession】

    参考: spark中文官方网址:http://spark.apachecn.org/#/ https://www.iteblog.com/archives/1674.html 一.知识点: 1.Dat ...

  8. 【Redis】三、Redis安装及简单示例

    (四)Redis安装及使用   Redis的安装比较简单,仍然和大多数的Apache开源软件一样,只需要下载,解压,配置环境变量即可.具体安装过程参考:菜鸟教程Redis安装.   安装完成后,通过r ...

  9. LeetCode_18 4Sum

    Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums s ...

  10. libevent reference Mannual IV --Helper functions and types

    FYI: http://www.wangafu.net/~nickm/libevent-book/Ref5_evutil.html Helper functions and types for Lib ...