Language:
Default
Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 22113   Accepted: 6187

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate
ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way. 



After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary
channels to bring water to all the villages, which means there will be only one way to connect each village to the capital. 



His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel
between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that
each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line. 



As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the
position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

题意:将n个村庄连在一起,告诉每一个村庄的三维坐标,村庄之间的距离为水平方向上的距离。花费为垂直方向上的高度差。求把村庄连接起来的最小的花费与长度之比为多少。

思路:经典的01分数规划问题,參考这位大神的解说应该就能明确了:http://www.cnblogs.com/Fatedayt/archive/2012/03/05/2380888.html

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005; double x[maxn],y[maxn],z[maxn];
double dist[maxn],mp[maxn][maxn],len[maxn][maxn],cost[maxn][maxn];
bool vis[maxn];
int pre[maxn];
int n; double Dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
} double prim(double r)
{
int i,j,now;
double mi,c=0,l=0;
for (i=0;i<n;i++)
{
dist[i]=INF;
for (j=0;j<n;j++)
{
mp[i][j]=cost[i][j]-r*len[i][j];
}
}
for (i=0;i<n;i++)
{
dist[i]=mp[i][0];
pre[i]=0;
vis[i]=false;
}
dist[0]=0;
vis[0]=true;
for (i=1;i<n;i++)
{
mi=INF;now=-1;
for (j=0;j<n;j++)
{
if (!vis[j]&&mi>dist[j])
{
mi=dist[j];
now=j;
}
}
if (now==-1) break;
vis[now]=true;
c+=cost[pre[now]][now];
l+=len[pre[now]][now];
for (j=0;j<n;j++)
{
if (!vis[j]&&dist[j]>mp[now][j])
{
dist[j]=mp[now][j];
pre[j]=now;
}
}
}
return c/l;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j;
while (sf(n))
{
if (n==0) break;
for (i=0;i<n;i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for (i=0;i<n;i++)
{
for (j=0;j<n;j++)
{
len[i][j]=Dis(i,j);
cost[i][j]=fabs(z[i]-z[j]);
}
}
double r=0,rate; //r迭代初值为0
while (1)
{
rate=r;
r=prim(r);
if (fabs(r-rate)<eps) break;
}
printf("%.3f\n",r);
}
return 0;
}

Desert King (poj 2728 最优比率生成树 0-1分数规划)的更多相关文章

  1. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

  2. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  3. poj 2728 最优比率生成树

    思路:设sum(cost[i])/sum(dis[i])=r;那么要使r最小,也就是minsum(cost[i]-r*dis[i]);那么就以cost[i]-r*dis[i]为边权重新建边.当求和使得 ...

  4. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  5. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  6. Desert King POJ - 2728(最优比率生产树/(二分+生成树))

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  7. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  8. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  9. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

随机推荐

  1. EXPLAIN - 显示语句执行规划

    SYNOPSIS EXPLAIN [ ANALYZE ] [ VERBOSE ] statement DESCRIPTION 描述 这条命令显示PostgreSQL规划器为所提供的语句生成的执行规划. ...

  2. DROP TABLE - 删除一个表

    SYNOPSIS DROP TABLE name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP TABLE 从数据库中删除表或视图. 只有其所有 ...

  3. treetable

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. css--css选择器,伪类

    前戏 前面我们说过CSS规则由选择器和声明组成,我们要给标签设置属性,那我们就要找到对应的标签,CSS选择器可以帮我们找到我们需要的标签 css选择器有: 标签选择器 类选择器 ID选择器 全局选择器 ...

  5. Visual Studio 安装VS10x CodeMAP

    最近出差,用的是公司电脑,电脑安装的是Visual Studio 2017 VS10x CodeMap 支持Visual Studio 2010, 2012, 2013, 2015,不支持Visual ...

  6. 洛谷 P1085 不高兴的津津

    这道题就是经典的条件分支的题https://www.luogu.org/problemnew/show/P1085 code: #include <stdio.h> int main() ...

  7. 04--activiti demo

    核心API1:ProcessEngine说明:1) 在Activiti中最核心的类,其他的类都是由他而来.2) 产生方式: ProcessEngine processEngine = ProcessE ...

  8. JavaIO基础学习笔记

    JavaIO JavaIO即Java的输入输出系统.比如我们的程序要读取一个文本文件.一张图片或者要获取控制台输入的内容,就要用到输入流:又或者程序要将生成的一段字符窜以文件的形式保存到系统中就要用到 ...

  9. NOI模拟赛(3.15) sequence(序列)

    Description 小A有N个正整数,紧接着,他打算依次在黑板上写下这N个数.对于每一个数,他可以决定将这个数写在当前数列的最左边或最右边.现在他想知道,他写下的数列的可能的最长严格上升子序列(可 ...

  10. LayUI分页基于ASP.NET MVC

    ---恢复内容开始--- 今天写了挺久的分页,百度了很多都没有很好的.Net实例,今天我来更新一期关于layuiTable分页 首先你得理解layui的官方文档的Table分页部分,我在这里附上地址 ...