FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 275 Solved: 152
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
4 13
Sample Output
120
and:

or:

其实公式蛮好推的。。而且也不唯一 比如说 xor 还可以是 A=(A0-A1,A0+A1) 逆A就再反着算一下就可以
还有 FWT只是沿用 FFT和NTT的思想。
【FFT的思想,构造一种可逆的特殊变换trans,使得(trans(a*b))[i]=(trans(a))[i]*(trans(b))[i]。】
但是从界门纲目科属种来看 还是不像FFT与NTT 如此相似。
FWT不需要rev数组 ,举例N=8,下标为0~7。变换的时候,先对01,23,45,67做,再对02,13,46,57做,最后对04,15,26,37做。逆变换把顺序反过来就好了。
而且,这种特殊多项式乘法 满足结合律 ,trans后可以快速幂。
贴本题代码:
#include <bits/stdc++.h>
#define LL long long
const int mo=;
using namespace std;
int x,y,n,m,a[],T,t,f[];
LL po(LL x,LL y){
LL z=;
for (;y;y>>=,x=x*x%mo)
if (y&) z=z*x%mo;
return z;
}
void fwt(int *a,int n,int d){
for (m=;m<=n;m<<=)
for (int i=,k=m>>;i<n;i+=m)
for (int j=i;j<i+k;++j){
int u=a[j],v=a[j+k];
a[j]=(u+v)%mo,a[j+k]=(u-v)%mo;
}
if (d<){
LL x=po(n,mo-);
for (int i=;i<n;++i) a[i]=x*a[i]%mo;
}
}//注意a[i]<0
int main(){
for (int i=;i<=;++i){
if (!a[i]) a[++T]=i;
for (int j=;j<=T;++j){
int x=a[j]*i; if (x>) break;
a[x]=; if (!(i%a[j])) break;
}
}
while (scanf("%d%d",&x,&y)==){
for (t=;a[t]<=y;++t) f[a[t]]=; --t;
for (n=;n<=a[t];n<<=);
fwt(f,n,);
for (int i=;i<n;++i) f[i]=po(f[i],x);
fwt(f,n,-);
printf("%d\n",(f[]+mo)%mo);
for (int i=;i<n;++i) f[i]=;
}
return ;
}
化け物
FWT [BZOJ 4589:Hard Nim]的更多相关文章
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- [BZOJ 4589]Hard Nim
Description 题库链接 两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种.对 \(10^9+7\) 取模. \(1\ ...
- bzoj 4589 FWT
#include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...
随机推荐
- hihoCoder#1127 二分图三·二分图最小点覆盖和最大独立集
原题地址 主要是介绍了两个定理: 1. 二分图最大匹配数 = 二分图最小点覆盖数 2. 二分图最小点覆盖数 = 二分图顶点数 - 二分图最小点覆盖数 注意,都是二分图 代码:(匈牙利算法) #i ...
- 【区间筛】2017多校训练四 HDU6069 Counting Divisors
http://acm.hdu.edu.cn/showproblem.php?pid=6069 [题意] 给定l,r,k,求 d(n)是n的因子个数 [思路] [Accepted] #include&l ...
- 16 个常用的yum 命令
1. yum [-y] install package_name2. yum remove package_name 卸载指定软件3. ...
- iOS 如何查看崩溃日志
参考网址: [转载]https://www.jianshu.com/p/4de55d73c82b [转载]https://blog.csdn.net/qq_26544491/article/detai ...
- Eclipse运行Maven命令时出现:-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment variable and mvn script match.问题解决
错误: -Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment varia ...
- vue-alioss-组件封装
<template> <div class="vui_alioss_upload"> <div @click="uloadImg()&quo ...
- [LeetCode][Java] Subsets
题目: Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset ...
- jquery全局变量---同步请求设置
1.同步 $.ajaxSetup({ async: false }); 2.异步 $.ajaxSetup({ async: true }); 3.说明:我们一般使用同步完要恢复异步.由于js默 ...
- Eclipse配置中文(汉化)
1.首先打开网址:http://www.eclipse.org/babel/downloads.php 然后查看安装以及版本选择 关于安装存储库,去这里查看 我选的是最新的版本:oxygen 未FQ请 ...
- hdu 3549 Flow Problem(最大流模板题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Problem Description Network flow is a well-known ...