4589: Hard Nim

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 275  Solved: 152
[Submit][Status][Discuss]

Description

 
 
Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下:
1. Claris和NanoApe两个人轮流拿石子,Claris先拿。
2. 每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。
不同的初始局面,决定了最终的获胜者,有些局面下先拿的Claris会赢,其余的局面Claris会负。
Claris很好奇,如果这n堆石子满足每堆石子的初始数量是不超过m的质数,而且他们都会按照最优策略玩游戏,那么NanoApe能获胜的局面有多少种。
由于答案可能很大,你只需要给出答案对10^9+7取模的值。
 
 

Input

输入文件包含多组数据,以EOF为结尾。
对于每组数据:
共一行两个正整数n和m。
每组数据有1<=n<=10^9, 2<=m<=50000。
不超过80组数据。
 

Output

 

Sample Input

3 7
4 13

Sample Output

6
120
 
 
其实这题和上午XJOI里的T3差不多。
具体做法请看别人博客http://blog.csdn.net/jr_mz/article/details/51606673
然而 问题来了。第一次我TLE了,交了Mz的代码 发现他只要6s。
然后仔细对比。。。看了好久祝天然的代码。 得出结论【啊首先 只要不开LL就不会TLE。但是时间的瓶颈不在这。】:
  FWT的数组n(是2的幂、当然)只要大于(注意是严格大于。否则就WA了)其中的任意一个元素就可以。
 
恩。再贴一下各种FWT的公式
xor:

and:

or:

其实公式蛮好推的。。而且也不唯一  比如说 xor  还可以是 A=(A0-A1,A0+A1) 逆A就再反着算一下就可以

还有 FWT只是沿用 FFT和NTT的思想。

【FFT的思想,构造一种可逆的特殊变换trans,使得(trans(a*b))[i]=(trans(a))[i]*(trans(b))[i]。】

但是从界门纲目科属种来看 还是不像FFT与NTT 如此相似。

FWT不需要rev数组 ,举例N=8,下标为0~7。变换的时候,先对01,23,45,67做,再对02,13,46,57做,最后对04,15,26,37做。逆变换把顺序反过来就好了。

而且,这种特殊多项式乘法 满足结合律  ,trans后可以快速幂。

贴本题代码:

 #include <bits/stdc++.h>
#define LL long long
const int mo=;
using namespace std;
int x,y,n,m,a[],T,t,f[];
LL po(LL x,LL y){
LL z=;
for (;y;y>>=,x=x*x%mo)
if (y&) z=z*x%mo;
return z;
}
void fwt(int *a,int n,int d){
for (m=;m<=n;m<<=)
for (int i=,k=m>>;i<n;i+=m)
for (int j=i;j<i+k;++j){
int u=a[j],v=a[j+k];
a[j]=(u+v)%mo,a[j+k]=(u-v)%mo;
}
if (d<){
LL x=po(n,mo-);
for (int i=;i<n;++i) a[i]=x*a[i]%mo;
}
}//注意a[i]<0
int main(){
for (int i=;i<=;++i){
if (!a[i]) a[++T]=i;
for (int j=;j<=T;++j){
int x=a[j]*i; if (x>) break;
a[x]=; if (!(i%a[j])) break;
}
}
while (scanf("%d%d",&x,&y)==){
for (t=;a[t]<=y;++t) f[a[t]]=; --t;
for (n=;n<=a[t];n<<=);
fwt(f,n,);
for (int i=;i<n;++i) f[i]=po(f[i],x);
fwt(f,n,-);
printf("%d\n",(f[]+mo)%mo);
for (int i=;i<n;++i) f[i]=;
}
return ;
}

化け物

FWT [BZOJ 4589:Hard Nim]的更多相关文章

  1. BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...

  2. bzoj 4589 Hard Nim——FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...

  3. BZOJ 4589 Hard Nim(FWT加速DP)

    题目链接  Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...

  4. bzoj 4589 Hard Nim —— FWT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...

  5. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  6. BZOJ.4589.Hard Nim(FWT)

    题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...

  7. BZOJ 4589 Hard Nim ——FWT

    [题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...

  8. [BZOJ 4589]Hard Nim

    Description 题库链接 两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种.对 \(10^9+7\) 取模. \(1\ ...

  9. bzoj 4589 FWT

    #include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...

随机推荐

  1. java使用反射的好处

    文章:框架使用java反射好处 讲了框架读取配置文件的类名,使用反射灵活的创建对象.不用在代码层面写死,可以在一些场合非常灵活. 文章:Java 反射在实际开发中的应用 还没具体

  2. HDU-1210Eddy's 洗牌问题

    Eddy's 洗牌问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Prob ...

  3. [codeforces722C]Destroying Array

    [codeforces722C]Destroying Array 试题描述 You are given an array consisting of n non-negative integers a ...

  4. [luoguP2184] 贪婪大陆(树状数组)

    传送门 用两个树状数组,cr 维护 1....x 中 r 的数量 cl 维护 1....x 中 l 的数量 求答案的时候只需要求 y 前面 被作为左端点 的个数 - x 前面 被作为右端点的个数 —— ...

  5. 一个SAM的样例

    \[s=abcbacbcb\\ \begin{split} p \quad& fa \quad& Substrings \quad& Right \\ 1 \quad& ...

  6. 洛谷P1504 积木城堡

    题目描述 XC的儿子小XC最喜欢玩的游戏用积木垒漂亮的城堡.城堡是用一些立方体的积木垒成的,城堡的每一层是一块积木.小XC是一个比他爸爸XC还聪明的孩子,他发现垒城堡的时候,如果下面的积木比上面的积木 ...

  7. CPU问题定位与解决

    CPU问题定位基本流程:   性能计数器诊断 主要用到的性能计数器 %Process Time 全实例 (主要用于查看当前服务器的CPU 情况) %Process Time sqlservr (主要用 ...

  8. js面试题总结

    1.typeof和Object.prototype.toString typeof是js里面判断变量类型的一种方法,但这种方法没有Object.prototype.toString准确,前者有6种判断 ...

  9. TimePickerDialog

    package com.pingyijinren.helloworld.activity; import android.app.TimePickerDialog; import android.su ...

  10. MongoDB学习day05--MongDB开启权限验证,创建用户

    一.MongoDB账户权限配置 1.创建超级管理员用户 use admin db.createUser({ user:'admin', pwd:'123456', roles:[{role:'root ...