[ ZJOI 2006 ] Trouble
\(\\\)
\(Description\)
有\(N\)个人的环,每个人需要至少\(x_i\)种不同的物品,并且要求任意相邻的两人都没有相同的物品,求最少需要多少种物品。
- \(N\in [0,2\times 10^4]\),\(x_i\in [0,10^5]\)
\(\\\)
\(Solution\ \text O(NlogN)\)
考虑二分答案,首先注意到相邻两人所有物品种类一定不同,所以下界是相邻两人限制之和取\(max\)。
注意到限制只是两两之间的,如果是奇环的话只有头尾会出问题,所以上界最多只需要下界的二倍。
验证的部分就很神仙了,思想是\(min-max\)转化:
设\(mx[i]\)表示在二分总个数为\(x\)的情况下,第\(i\)个位置的人所得物品中,与第一个人相同的个最多有多少个,同理设\(mn[i]\)表示此情况下第\(i\)个位置的人与第一个人最少有多少个相同的物品。
最大部分的转移:考虑要求与前一个不同,所以从第一个人得到的所有物品里去掉前一个最少得到的即可\(\begin{align}mx[i]=min(x[i],x[1]-mn[i-1])\end{align}\)
最小部分的转移:所求即为第一个人得到的所有物品里,去掉当前人最多能够不与第一个人重合的部分,但是还要考虑两人不能重合,所以有\(\begin{align}mn[i]=max(0,a[i]-(x-(a[i-1]-mx[i-1])-a[1]))\end{align}\)具体可以理解成自由部分即为全集去掉第一个人的所有和前一个人的所有,再减掉两个人可行的最大交集。
若最后一个人的最小值可以为\(0\)则证明不会与第一个人冲突,合法。
\(\\\)
\(Code\)
#include<cmath>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 20010
#define R register
#define gc getchar
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,l,r,a[N],mx[N],mn[N];
inline bool valid(int x){
mn[1]=mx[1]=a[1];
for(R int i=2;i<=n;++i){
mx[i]=min(a[i],a[1]-mn[i-1]);
mn[i]=max(0,a[i]-(x-(a[i-1]-mx[i-1])-a[1]));
}
return (mn[n]==0);
}
int main(){
n=rd();
for(R int i=1;i<=n;++i) a[i]=rd();
l=a[n]+a[1];
for(R int i=1;i<n;++i) l=max(l,a[i]+a[i+1]);
r=l*2;
while(l<r){
int mid=(l+r)>>1;
valid(mid)?r=mid:l=mid+1;
}
printf("%d\n",l);
return 0;
}
\(\\\)
\(Solution\ \text O(N)\)
这题还有更神仙的做法
首先必须考虑的限制不变,还是两两相邻求和最大值。
考虑另外的限制,即出现奇环时问题的解决方案,此时神仙们怎么就能想到另外一个切入点,每个相同的物品至多只能分给\(\lfloor\frac{N}{2}\rfloor\)个人,因为再多一个人必然会出现相邻的冲突。那么假设\(sum=\sum x_i\),那么\(sum\)这么多的物品中每一类最多只能有\(\lfloor\frac{N}{2}\rfloor\)个有贡献,所以只考虑总和的情况下,至少需要\(\Big\lceil\frac{sum}{\big\lfloor\frac{N}{2}\big\rfloor}\Big\rceil\)种。
对两个角度的答案取最大即可。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 20010
#define R register
#define gc getchar
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,ans,sum,a[N];
int main(){
n=rd();
for(R int i=1;i<=n;++i) sum+=(a[i]=rd());
ans=max(a[n]+a[1],(int)ceil((double)sum/(n/2)));
for(R int i=1;i<n;++i) ans=max(ans,a[i]+a[i+1]);
printf("%d\n",ans);
return 0;
}
[ ZJOI 2006 ] Trouble的更多相关文章
- [ZJOI 2006]超级麻将
Description Input 第一行一个整数N(N<=100),表示玩了N次超级麻将. 接下来N行,每行100个数a1..a100,描述每次玩牌手中各种牌的数量.ai表示数字为i的牌有ai ...
- [ZJOI 2006]书架
Description 小T有一个很大的书柜.这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列.她用1到n的正整数给每本书都编了号. 小T在看书的时候,每次取出一本书,看完后放回书柜然后再拿下 ...
- [ZJOI 2006]物流运输
Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...
- 解题:ZJOI 2006 皇帝的烦恼
禁止DP,贪心真香 有一个比较明显的贪心思路是让每个人和距离为$2$(隔着一个人)的人尽量用一样的,这样只需要扫一遍然后对每对相邻的人之和取最大值即可.但是当人数为奇数时这样就会出锅,因为最后一个人和 ...
- 解题:ZJOI 2006 书架
题面 学习了如何在维护序列的平衡树上查找某个数:按初始的顺序定个权值,然后每次找那个权值的DFS序即可.具体实现就是不停往上跳,然后是父亲的右儿子就加上父亲的左儿子,剩下的就是继续熟悉无旋树堆 #in ...
- 解题:ZJOI 2006 游戏排名系统
题面 跟i207M学了学重载运算符后找前驱后继,然后就是练练无旋树堆 #include<map> #include<cstdio> #include<string> ...
- [BZOJ1003](ZJOI 2006) 物流运输trans
[题目描述] 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟 ...
- 【ZJOI 2006】 物流运输
[题目链接] 点击打开链接 [算法] 令cost(i,j) = 第i天到第j天走相同的路线,路线长度的最小值 那么,只需筛选出第i天到第j天可以装卸货物的码头,然后将这些码头之间连边,跑弗洛伊德(或其 ...
- 洛谷 P2585 [ ZJOI 2006 ] 三色二叉树 —— 树形DP
题目:https://www.luogu.org/problemnew/show/P2585 首先,三色其实记录两种状态:是绿色,不是绿色 即可,因为红蓝可以随意取反: 一开始因为懒得还原出树,所以写 ...
随机推荐
- IDEA建立一个可运行的struts2项目
参考博客:https://blog.csdn.net/shuai_wy/article/details/79027573 直接使用IDEA创建struts2项目,配置好tomcat后是跑不起来的 需要 ...
- java之比较两个日期大小----https://blog.csdn.net/dongfangbaiyun/article/details/51225469
https://blog.csdn.net/dongfangbaiyun/article/details/51225469 java之比较两个日期大小 最近又用到两个日期大小的比较,因此记录在此,方便 ...
- image url to base64
image url to base64 https://www.base64-image.de/ https://www.browserling.com/tools/image-to-base64 h ...
- java多线程编程核心技术(四)--Lock的使用
1.jdk1.5中新增了ReentrantLock类,该类也可以实现synchronized线程之间同步互斥的效果. 2.jdk1.5中新增了Condition类.在Lock对象中可以创建多个Cond ...
- RabbitMQ消息队列阻塞导致服务器宕机
最近工作中存储服务器由于压力太大无法及时消费消息.这个过程中,导致RabbitMQ意外挂掉,无法访问.下面是部分问题分析过程. 麒麟系统服务器分析 1.服务器异常信息: [root@localhost ...
- react实现ssr服务器端渲染总结和案例(实例)
1.什么是 SSR SSR 是 server side render 的缩写,从字面上就可以理解 在服务器端渲染,那渲染什么呢,很显然渲染现在框架中的前后端分离所创建的虚拟 DOM 2.为什么要实现服 ...
- How can I add files to a Jar file? (or add a file to a zip archive)
https://stackoverflow.com/questions/12239764/how-can-i-add-files-to-a-jar-file M.java class M{ publi ...
- C#之插入排序
算法描述 1.假定数组第一位为有序序列,抽出后一位元素与有序序列中元素依次比较: 2.如果有序序列元素大于抽出元素,将该元素向后移位: 3.重复前面步骤依次抽取无序序列中首位元素进行比较,直到所有数值 ...
- hdu5305(2015多校2)--Friends(状压,深搜)
Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Su ...
- 一个MySQL-JDBC驱动bug引起的血案……
问题背景 公司是做电商系统的,整个系统搭建在华为云上.系统设计的时候,考虑到后续的用户和订单数量比较大,需要使用一些大数据库的组件.关系型数据库这块,考虑到后续数据量的快速增长,不是直接写入MySQL ...