Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6549   Accepted: 3168

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

解题思路:
1、构造差分约束系统:
A。B距离不超过D则B-A<=D,
A,B距离至少为D则A-B<=-D.
2、若有解则求1和N之间的最短路径:
比如:A-B<=D1 , B-C<=D2, A-C<=D3 不等式相加得:A-C<=min(D3,D1+D2)。而当A-B<=D时。我们建的边是B->A的。所以我们仅仅要求出1到N的最短距离就可以,假设没有最短距离。则输出-2.

#include <iostream>
#include <cstdio>
#include <queue>
using namespace std; const int maxne = 1000000;
const int maxnn = 1010;
const int INF = 0x3f3f3f3f;
struct edge{
int u , v , d;
edge(int a = 0 , int b = 0 , int c = 0){
u = a , v = b , d = c;
}
}e[maxne];
int head[maxnn] , next[maxne] , cnt , dis[maxnn] , vis[maxnn] , vt[maxnn];
int N , ML , MD; void add(int u , int v , int d){
e[cnt] = edge(u , v , d);
next[cnt] = head[u];
head[u] = cnt++;
} void initial(){
for(int i = 0; i < maxnn; i++) head[i] = -1 , dis[i] = INF , vis[i] = 0 , vt[i] = 0;
for(int i = 0; i < maxne; i++) next[i] = -1;
cnt = 0;
for(int i = 1; i < N; i++){
add(0 , i , 0);
add(i+1 , i , 0);
}
add(0 , N , 0);
dis[0] = 0;
} void readcase(){
int u , v , d;
while(ML--){
scanf("%d%d%d" , &u , &v , &d);
add(u , v , d);
}
while(MD--){
scanf("%d%d%d" , &u , &v , &d);
add(v , u , -1*d);
}
} bool SPFA(int start){
queue<int> q;
q.push(start);
vt[start]++;
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = 0;
int n = head[u];
if(vt[u] > N+1){
return false;
}
while(n != -1){
int v = e[n].v;
if(dis[v] > dis[u]+e[n].d){
dis[v] = dis[u]+e[n].d;
if(vis[v] == 0){
vt[v]++;
q.push(v);
vis[v] = 1;
}
}
n = next[n];
}
}
return true;
} void computing(){
if(!SPFA(0)){
printf("-1\n");
}else{
for(int i = 0; i < maxnn; i++) dis[i] = INF;
dis[1] = 0;
SPFA(1);
if(dis[N] == INF){
printf("-2\n");
}else{
printf("%d\n" , dis[N]);
}
}
} int main(){
while(scanf("%d%d%d" , &N , &ML , &MD) != EOF){
initial();
readcase();
computing();
}
return 0;
}

poj 3169 Layout(差分约束)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  7. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  8. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

  9. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  10. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

随机推荐

  1. keypoint && DMatch

    下面单独介绍KEYPOINT 与DMatch的内在联系 std::vector<cv::Point2f> points1, points2; for (std::vector<cv: ...

  2. Configure Red Hat Enterprise Linux shared disk cluster for SQL Server

    下面一步一步介绍一下如何在Red Hat Enterprise Linux系统上为SQL Server配置共享磁盘集群(Shared Disk Cluster)及其相关使用(仅供测试学习之用,基础篇) ...

  3. Scrapy 应用之爬取《盗墓笔记》

    爬取<盗墓笔记>和爬取<宦海沉浮>原理一样,但是使用了两种不同的追踪链接的方式,<盗墓笔记>使用的是跟踪下一页链接,直至没有下一页为止,<宦海沉浮>则是 ...

  4. 九度oj 题目1051:数字阶梯求和

    题目描述: 给定a和n,计算a+aa+aaa+a...a(n个a)的和. 输入: 测试数据有多组,输入a,n(1<=a<=9,1<=n<=100). 输出: 对于每组输入,请输 ...

  5. jQuery中文文档

    http://www.jquery123.com/ http://www.shifone.cc/

  6. MapReduce和Hadoop流

    MapReduce:分布式计算的框架 MapReduce是一个软件框架,可以将单个计算作业分配给多台计算机执行. MapReduce在大量节点组成的集群上运行.它的工作流程是:单个作业被分成很多小份, ...

  7. 算法复习——数位dp(不要62HUD2089)

    题目 题目描述 杭州人称那些傻乎乎粘嗒嗒的人为 62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司 ...

  8. spring之注入类型

    spring有三种注入类型: set注入: 构造注入: 接口注入: 一.set注入(引用spring官方文档中的例子)(用的最多) 1.首先在代码中我们需要编写成员变量的set方法,如下所示,一般情况 ...

  9. C 语言中的 feof()函数

    功能: feof 是 C 语言标准库函数函数,其原型在 stdio.h 中,其功能是检测流上的文件结束符,如果文件结束,则返回非0值,否则返回0,文件结束符只能被 clearerr() 清除. 用法: ...

  10. getParameter 与 getAttribute的区别

    request.getAttribute():是request时设置的变量的值,用request.setAttribute("name","您自己的值");来设 ...