P2709 小B的询问——普通莫队&&模板
普通莫队概念
莫队:莫涛队长发明的算法,尊称莫队。其实就是优化的暴力。
普通莫队只兹磁询问不支持修改,是离线的。
莫队的基本思想:就是假定我得到了一个询问区间[l,r]的答案,那么我可以在极短(通常是O(1))的时间复杂度内得到[l+1,r]的答案——于是对于区间查询类的题目,我可以一次性读完所有询问之后来回转移,得到每一个区间的答案。
如果可以通过区间[l,r]快速转移到[l-1,r][l+1,r][l,r-1][l,r+1],那么可以用O(x*|l1-l2|+|r1-r2|)的时间完成转移,[l2,r2]是[l1,r1]的后一次询问,x是[l,r]转到相邻区间的复杂度,我们让这个值最小,就是求曼哈顿距离最小生成树,但是这个比较难求。可以用分块加上一定规则来排序,以左端点所在块的编号为第一关键字排序,右端点的值作为第二关键字排序,最坏复杂度和上面的曼哈顿距离最小生成树是一样的,这个样子做的复杂度是 $O(n \sqrt n) $(不会证,反正使用分块后复杂度就是这)。
在这里,分块的作用就是加速而已。
题目
小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数
分析:
无修改莫队模板题,用一个数组记录当前区间每种数字出现的次数,在莫队转移是进行维护。
先读入所有的查询并排序,然后完成指针跳转得到每次查询的结果,最后根据查询顺序排序并输出结果。
对查询排序有两种方法:
- 左端点所在块的编号为第一关键字排序,右端点的值作为第二关键字排序
- 左端点所在块的编号为第一关键字排序,块号相同时,如果块序号为奇就升序排r,否则降序
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = + ;
struct Que{
int l, r, id; //id表示是第几次询问
ll res; //当前询问的答案
}q[maxn]; int n, m, k;
ll block[maxn], num[maxn], sum[maxn], size;
ll ans;
//block: 分块数组 size分块大小
//sum[i]: 元素i的个数 void init()
{
size = (int)sqrt(n);
for(int i = ;i <= n;i++) block[i] = (i-) / size + ;
} //莫队精髓一
bool cmp(Que x, Que y)
{
return block[x.l] == block[y.l] ? x.r < y.r : x.l < y.l;
} bool cmpp(Que x, Que y)//第二种排序方式,快一些
{
return (block[x.l] ^ block[y.l]) ? block[x.l] < block[y.l] : ((block[x.l] & ) ? x.r < y.r : x.r > y.r);
} //按查询顺序排序,用于输出答案
bool cmp_id(Que x, Que y)
{
return x.id < y.id;
} //莫队精髓二:转移
void modify(int x, int w)
{
ans -= sum[num[x]] * sum[num[x]]; ///先将这个位置数的原来sum的平方减去
sum[num[x]] += w; //更新个数统计数组
ans += sum[num[x]] * sum[num[x]]; //然后加上新的sum
} void solve()
{
int l = , r = ; //莫队精髓三:两个小指针来回跳,表示当前ans维护的区间的左右端点
for(int i = ;i <= m;i++)
{
while(r < q[i].r) modify(r+, ), r++;
while(r > q[i].r) modify(r, -), r--;
while(l < q[i].l) modify(l, -), l++;
while(l > q[i].l) modify(l-, ), l--;
q[i].res = ans;
}
} int main()
{
scanf("%d%d%d", &n, &m, &k);
for(int i = ;i <= n;i++) scanf("%lld", &num[i]);
for(int i = ;i <= m;i++)
{
scanf("%d%d", &q[i].l, &q[i].r);
q[i].id = i;
} init();
sort(q+, q+m+, cmp); //or cmpp solve(); sort(q+, q+m+, cmp_id);
for(int i = ;i <= m;i++)
printf("%lld\n", q[i].res); return ;
}
参考链接:
1. https://www.luogu.org/problemnew/solution/P2709?page=2
2. https://www.luogu.org/problemnew/solution/P1494
P2709 小B的询问——普通莫队&&模板的更多相关文章
- P2709 小B的询问(莫队)
P2709 小B的询问 莫队模板 资磁离线询问 维护两个跳来跳去的指针 先分块,蓝后询问按块排序. 蓝后每次指针左右横跳更新答案 #include<iostream> #include&l ...
- 【Luogu P2709 小B的询问】莫队
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- P2709 小B的询问(莫队入门)
题目链接:https://www.luogu.org/problemnew/show/P2709 题目大意:中文题目 具体思路:莫队入门题,按照离线的方式打的,对每一个区间进行分块和编号,如果在同一个 ...
- 洛谷 P2709 小B的询问(莫队)
题目链接:https://www.luogu.com.cn/problem/P2709 这道题是模板莫队,然后$i$在$[l,r]$区间内的个数就是$vis[ ]$数组 $add()$和$del()$ ...
- 【Luogu】P2709小B的询问(莫队算法)
题目链接 md,1A率等于0. 烦死. 终于搞到一道莫队了qwq. 先对区间分块再按照块编号为第一关键字,右端点为第二关键字排序,然后每次端点移动1乱搞. 然后……就wa了. 然后有很多细节需要注意q ...
- 【洛谷2709】小B的询问(莫队模板题)
点此看题面 大致题意: 有一个长度为\(N\)的序列,每个数字在\(1\sim K\)之间,有\(M\)个询问,每个询问给你一个区间,让你求出\(\sum_{i=1}^K c(i)^2\),其中\(c ...
- P2709 小B的询问 (莫队板子)
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...
- BZOJ_3781_小B的询问_莫队
BZOJ_3781_小B的询问_莫队 Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值 ...
- 小B的询问(题解)(莫队)
小B的询问(题解)(莫队) Junlier良心莫队 题目 luoguP2709 小B的询问 code #include<bits/stdc++.h> #define lst long lo ...
随机推荐
- JavaSE基础(五)--Java运算符
Java 运算符 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,Java也提供了一套丰富的运算符来操纵变量.我们可以把运算符分成以下几组: 算术运算符 关系运算符 位运算符 逻辑运算符 ...
- js函数(2)
8.3函数的形参和实参 js中的函数并未指定函数形参的类型,函数调用也未对传入的实参值做任何类型的检查. 8.3.1函数的形参和实参 当调用函数时传入的实参比函数声明时指定的形参个数要少,剩下的参数都 ...
- [转]Mybatis之TypeHandler使用教程
Mybatis之TypeHandler使用教程 https://blog.csdn.net/jokemqc/article/details/81326109 深入浅出Mybatis系列(五)---Ty ...
- 提示ORA-28000 the account is locked
1.启动项目的时候提示ORA-28000 the account is locked. 2. 这是因为用户被锁定了. 查询FAILED_LOGIN_ATTEMPTS参数默认值,这个参数限制了从第一次登 ...
- python3连接oracle数据库
声明:python,cx_Oracle和instantclient的版本应一致 我这里使用的版本是python3.6 64位 ,cx_Oracle-5.3-11g.win-amd64-py3.6-2和 ...
- Oracle对象-视图和索引
Oracle 对象-视图 视图概念 视图就是提供一个查询的窗口,所有的数据来自于原表 创建视图[必须有dba权限] --查询语句创建表 create table emp as select * f ...
- 文件 open 方法
文件对象方法: 文件对象方法 执行操作 f.close() 关闭文件 f.read([size=-1]) 从文件读取size个字符,当未给定size或给定负值的时候, 读取剩余的所有字符,然后 ...
- 15.Ansible安装与配置简单版
Ansible是一个简单高效的自动化运维管理工具,用Python开发,能大批量管理N多台机器,可以并发的在多台机器上部署应用.安装软件.执行命令.配置和编排任务. 一.Ansible工作机制 从图中可 ...
- android中sqlite数据库的基本使用和添加多张表
看了很多关于android使用sqlite数据库的文章,很多都是介绍了数据库的建立和表的建立,而表通常都是只建立一张,而实际情况我们用到的表可能不止一张,那这种情况下我们又该怎么办呢,好了,下面我教大 ...
- Your ApplicationContext is unlikely tostart due to a @ComponentScan of the defau
一.错误提示: Your ApplicationContext is unlikely tostart due to a @ComponentScan of the default package.. ...