loj2587 「APIO2018」铁人两项[圆方树+树形DP]
主要卡在一个结论上。。关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会。可以参见clz博客。。我就是跟着他学的
然后就好办了,转化为树上两点计经过点双内所有点个数,然后赋权后变为统计两两圆点对的路径权值和,这个就是一个树形DP,统计每个点作为圆点或者方点被所有路径经过多少次,加入答案。。
还是比较裸的,因为重点还在于这个很多题都出现到的点双的简单路径的性质。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr << #x << " = " << x <<endl
#define dbg2(x,y) cerr<< #x <<" = "<< x <<" "<< #y <<" = "<< y <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=1e5+;
struct thxorz{
int head[N<<],nxt[N<<],to[N<<],tot;
inline void add(int x,int y){
to[++tot]=y,nxt[tot]=head[x],head[x]=tot;
to[++tot]=x,nxt[tot]=head[y],head[y]=tot;
}
}G1,G2;
int n,m;
ll ans;
int val[N<<],siz[N<<],cnt,Siz;
int dfn[N],low[N],stk[N],top,tim;
#define y G1.to[j]
void tarjan(int x){
dfn[x]=low[x]=++tim,stk[++top]=x,++Siz;
for(register int j=G1.head[x];j;j=G1.nxt[j]){
if(!dfn[y]){
tarjan(y),MIN(low[x],low[y]);
if(low[y]==dfn[x]){
int tmp,sum=;++cnt;
do tmp=stk[top--],G2.add(cnt,tmp),val[tmp]=-,++sum;while(tmp^y);
G2.add(cnt,x),val[x]=-;val[cnt]=++sum;
}
}
else MIN(low[x],dfn[y]);
}
}
#undef y
#define y G2.to[j]
void dp(int x,int fa){
int d=x<=n;siz[x]=d;
for(register int j=G2.head[x];j;j=G2.nxt[j])if(y^fa){
dp(y,x),siz[x]+=siz[y];
ans+=siz[y]*1ll*(Siz-siz[y])*val[x];
}
ans+=d*(Siz-)*1ll*val[x]+(Siz-siz[x])*1ll*siz[x]*val[x];
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m);cnt=n;
for(register int i=,x,y;i<=m;++i)read(x),read(y),G1.add(x,y);
for(register int i=;i<=n;++i)if(!dfn[i]){
Siz=top=;tarjan(i),dp(i,);
}
printf("%lld\n",ans);
return ;
}
总结:图上简单路径题多半和点双有关系
loj2587 「APIO2018」铁人两项[圆方树+树形DP]的更多相关文章
- LOJ 2587 「APIO2018」铁人两项——圆方树
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...
- [APIO2018] Duathlon 铁人两项 圆方树,DP
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- loj2587 「APIO2018」铁人两项
圆方树orz,参见猫的课件(apio和wc的)以及这里那里 #include <iostream> #include <cstdio> using namespace std; ...
- 【刷题】LOJ 2587 「APIO2018」铁人两项
题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段 ...
- LOJ #2587「APIO2018」铁人两项
是不是$ vector$存图非常慢啊...... 题意:求数对$(x,y,z)$的数量使得存在一条$x$到$z$的路径上经过$y$,要求$x,y,z$两两不同 LOJ #2587 $ Solutio ...
- 【LOJ】#2587. 「APIO2018」铁人两项
题解 学习了圆方树!(其实是复习了Tarjan求点双) 我又双叒叕忘记了tarjan点双一个最重要,最重要的事情! 就是--假如low[v] >= dfn[u],我们就找到了一个点双,开始建立方 ...
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
随机推荐
- Odoo 13 released..
origin https://medium.com/@jc_57445/odoo-13-is-fantastic-f2b421696b49 Most striking changes The most ...
- 一次记录 java非web项目部署到linux
1.生成可执行jar 运行提示没有主清单属性 一番查找原因:是因为将项目生成jar包的时候,生成的MANIFEST.MF没有MAIN-CLASS,这里加上就可以了,后面的是项目启动类的完整类名 当然还 ...
- HNOI 2012/codevs 1994:排队
题目描述 Description 某中学有n 名男同学,m 名女同学和两名老师要排队参加体检.他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个 ...
- MySQL数据库CPU飙升紧急处理方法
MySQL数据库CPU飙升紧急处理方法 运行平稳的数据库,如果遇到CPU狂飙,到80%左右,那一定是开发写的烂SQL导致的,DBA首先要保证的是,数据库别跑挂了,所以我们要把那些运行慢的SQL杀死并记 ...
- LoadRunner编程之文件的操作
这篇文章主要写下LoadRunner下如何进行文件的操作. 1,文件的声明 LoadRunner不支持FILE数据类型,所以在LoadRunner中用int来声明一个文件: int MyFile; 2 ...
- oracle学习笔记day2
第三章:单值函数 函数分为: 1.单值函数 1.字符函数 2.日期函数 3.转换函数 4.数字函数 2.分组函数(后面的章节再做学习) 哑表dual dual是一个虚拟表,用来构成select的语法规 ...
- 1.3.1 Lock接口及其实现
1.锁的本质 2.Lock接口使用ReentrenLock 3.读写锁使用 4.读写锁实现 Lock接口方法 有点意思的是lockInterruptibly(), 只要没有获取到锁就会一直等待,直到某 ...
- 剑指offer24:二叉树中和为输入整数值的所有路径。(注意: 在返回值的list中,数组长度大的数组靠前)
1 题目描述 输入一颗二叉树的根节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长 ...
- 学习GTK+ (1) ——编写helloworld
环境 我使用的是新安装的manjaro 18.1 (kde版),安装新系统后后直接可以开始写代码,不需要安装各种调用的库等. 推荐一个网站,gnome开发者 https://developer.gno ...
- vue项目build 之后,css文件加载图片或者字体文件时404的解决。
ExtractTextWebpackPlugin 提供了一个 options.publicPath 的 api,可以为css单独配置 publicPath . 对于用 vue-cli 生成的项目,di ...