题意

给一个\(n\)的全排列数组\(a\),求一个递推数组每一项的值:\(ans[i]=ans[j]+1\),\(j\)为\(a[pos[i]-k]到a[pos[i]+k],(pos[i]为i在数组a中的下标)\)中小于\(i\)的最大的值。

分析

这题set的做法更优秀,但是想练习一下在主席树上二分。

按权值建主席树,对每个\(i\)去查询\(a[pos[i]-k]到a[pos[i]+k]\)中小于\(i\)的最大值,查询时先查询右儿子,再查询左儿子,因为找到的右儿子一定比左儿子大,直到找到一个满足条件的点。

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=1e5+10;
int T;
int n,k;
int a[maxn],b[maxn],ans[maxn],tr[maxn*30],ls[maxn*30],rs[maxn*30],rt[maxn],tot;
void bd(int l,int r,int &p){
tr[++tot]=tr[p],ls[tot]=ls[p],rs[tot]=rs[p],p=tot;
if(l==r) return;
int mid=l+r>>1;
bd(l,mid,ls[p]);bd(mid+1,r,rs[p]);
}
void up(int k,int l,int r,int &p){
tr[++tot]=tr[p]+1,ls[tot]=ls[p],rs[tot]=rs[p],p=tot;
if(l==r) return;
int mid=l+r>>1;
if(k<=mid) up(k,l,mid,ls[p]);
else up(k,mid+1,r,rs[p]);
}
int qy(int dl,int dr,int l,int r,int a,int b){
if(tr[b]-tr[a]==0) return 0;
if(l>=dl&&r<=dr){
if(l==r) return l;
int mid=l+r>>1,res=0;
if(dr>mid) res=qy(dl,dr,mid+1,r,rs[a],rs[b]);
if(dl<=mid&&res==0) res=qy(dl,dr,l,mid,ls[a],ls[b]);
return res;
}int mid=l+r>>1,res=0;
if(dr>mid) res=qy(dl,dr,mid+1,r,rs[a],rs[b]);
if(dl<=mid&&res==0) res=qy(dl,dr,l,mid,ls[a],ls[b]);
return res;
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d",&T);
while(T--){
tot=0;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
b[a[i]]=i;
}
bd(1,n,rt[0]);
for(int i=1;i<=n;i++){
rt[i]=rt[i-1];
up(a[i],1,n,rt[i]);
}ans[1]=1;
for(int i=2;i<=n;i++){
int l=max(0,b[i]-k-1),r=min(n,b[i]+k);
ans[i]=ans[qy(1,i-1,1,n,rt[l],rt[r])]+1;
}
for(int i=1;i<=n;i++){
printf("%d",ans[i]);
if(i==n) printf("\n");
else printf(" ");
ans[i]=0;
}
}
return 0;
}

2019icpc南京网络赛 F 主席树的更多相关文章

  1. 2019icpc南京网络赛 A 主席树

    题意 给一个\(n\times n\)的螺旋矩阵,给出其中的\(m\)个点的值分别为各个点上数字的数位之和,给出\(q\)个询问,每次询问从\((x1,y1)\)到\((x2,y2)\)的子矩阵的和. ...

  2. 2019ICPC南京网络赛F Greedy Sequence

    题意:对于1<=i<=n每次找到(pos[i]-k,pos[i]+k)内不大于i的最大那个数,ans[i]=ans[mx]+1,若ans[mx]未知则递归处理ans[mx] PS:这个题比 ...

  3. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  4. 2019icpc南京网络赛

    B. super_log(扩展欧拉函数) 题意:求aa...(b个a)模M的值. 思路:递归用欧拉函数求解,我们知道欧拉降幂公式: 如果讨论b和φ(p)的关系会很麻烦,网上证明了一种精妙的方法,只需重 ...

  5. 2019ICPC南京网络赛总结

    这次是在学校打的,总体不算好,过两题校排200多..很惨. 开场一段时间没人过题,但是很多人交I, 我也就再看,看着看着发现不可做,这时候转F,花了半天读懂题意的时候想到主席树查找.但是主席树这种查找 ...

  6. 2019icpc南京网络赛_F_Greedy Sequence

    题意 题意不明,队友告诉我对于每个\(i\),所在下标\(p[i]\),在\([p[i]-k,p[i]+k]\)中找到小于\(i\)的最大数\(x\),然后\(ans[i]=ans[x]+1\)即可. ...

  7. 2019icpc南京网络赛 A The beautiful values of the palace(离线+树状数组)

    题意: (假设所有的点对应的值已经求出)给你一个1e6*1e6的矩阵,有m<=1e5个点有值,其余都为0 q<=1e5个询问,求子矩阵的权值和 思路: 根据二维差分,对于询问左下角(x1, ...

  8. 2019ICPC南京网络赛B super_log——扩展欧拉定理

    题目 设函数 $$log_a*(x) = \begin{cases}-1, & \text{ if } x < 1 \\ 1+log_a*(log_ax) & \text{ if ...

  9. 2019ICPC南京网络赛A The beautiful values of the palace

    题意:蛇形填数超大版本,需要求出一些给定坐标的值的数位和,然后q次询问,一个矩形区域内值的和是多少 解题思路:二维偏序前缀和的经典题 二维偏序:求(x,y)左下角点的个数,思路是对x,y升序排序,用树 ...

随机推荐

  1. WPF——Application

    Application类处于WPF应用程序的最顶端,main函数就在这个类中. Application类的作用: 截图连接 https://docs.microsoft.com/zh-cn/dotne ...

  2. vue使用axios进行ajax请求

    以前都用resource进行ajax请求,现在官方推荐使用axios,所以现在更换插件.这篇文章主要描写如何在项目中引入axios以及简单地使用axios进行ajax请求. 第一步,需要通过npm安装 ...

  3. java线程的方便调用方式

    一直用java的线程,总感觉写起来阅读或书写起来不是方便,改进之. 实现类: public class Task<R> { private ExecutorService executor ...

  4. Eclipse怎么改变@author 姓名

    1 点击windows  然后选择 点击进去选择搜索code Templates  点击选择出现下面的页面 点开comments,里面有给方法,变量 ,类等加注释设置的模板 如:点击Methods  ...

  5. 【原创】大叔经验分享(57)hue启动coordinator时报错

    hue启动coordinator时报错,页面返回undefinied错误框: 后台日志报错: runcpserver.log [13/May/2019 04:34:55 -0700] middlewa ...

  6. 你真的知道em和rem的区别吗?

    前言 em 和 rem 都是相对单位,在使用时由浏览器转换为像素值,具体取决于您的设计中的字体大小设置. 如果你使用值 1em 或 1rem,它可以被浏览器解析成 从16px 到 160px 或其他任 ...

  7. CF516D Drazil and Morning Exercise

    cf luogu 首先每个点到最远点的距离可以预处理出来,这个距离显然是这个点到树直径两端点的最大值.把那个距离记为\(d_i\),然后从小到大枚举\(d_i\),并强制它为最大的\(d_i\),那么 ...

  8. luogu P3645 [APIO2015]雅加达的摩天楼

    luogu 暴力? 暴力! 这个题有点像最短路,所以设\(f_{i,j}\)表示在\(i\)号楼,当前\(doge\)跳跃能力为\(j\)的最短步数,转移要么跳一步到\(f_{i+j,j}\)和\(f ...

  9. 基于Openresty+Naxsi的WAF:从小白到实践

    序 2019年2月18日,加入妈妈网,至今已经有四个月的时间,上周进到一个网关项目组,这个项目的主要目的是基于openResty+Naxsi实现WAF,相关技术初定涉及到openResty.Lua.N ...

  10. cmake 判断操作系统平台

    转载自 cmake 判断操作系统平台 MESSAGE(STATUS "operation system is ${CMAKE_SYSTEM}") IF (CMAKE_SYSTEM_ ...