Acwing-203-同余方程(扩展欧几里得)
链接:
https://www.acwing.com/problem/content/205/
题意:
求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。
思路:
首先:扩展欧几里得推导.
有ax+by = gcd(a, b) = gcd(b, a%b),
ax+by = bx+(a%b)y
ax+by = bx+(a-(a/b)b)y
ax+by = bx + ay-(a/b)by
ax+by = ay + b(x-a/by)
有x' = y, y' = x-a/by
递归求解
对于ax = 1 (mod b).有b | ax+1. 令 ax+1 = -yb.
有ax+by = 1.用扩展欧几里得可以求出一个解.
代码:
#include <bits/stdc++.h>
using namespace std;
int ExGcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
int d = ExGcd(b, a%b, x, y);
int tmp = y;
y = x-(a/b)*y;
x = tmp;
return d;
}
int main()
{
int a, b, x, y;
scanf("%d%d", &a, &b);
int gcd = ExGcd(a, b, x, y);
printf("%d\n", ((x%b)+b)%b);
return 0;
}
Acwing-203-同余方程(扩展欧几里得)的更多相关文章
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- luogu P1082 同余方程 |扩展欧几里得
题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...
- luogu1082 [NOIp2012]同余方程 (扩展欧几里得)
由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
随机推荐
- 【Python】【demo实验16】【练习实例】【打印所有水仙花数】
题目: 打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数",因为153= ...
- 【Python】【基础知识】【内置函数】【print的使用方法】
原英文帮助文档: print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False) Print objects to the text ...
- shell基础篇
1. Shell概述 为什么要学习Shell呢? 1)需要看懂运维人员编写的Shell程序. 2)偶尔会编写一些简单Shell程序来管理集群.提高开发效率. 2 .Shell解析器 (1)Linux提 ...
- sql server存储过程回滚事务
SET NOCOUNT ON这个很常用 作用:阻止在结果集中返回显示受T-SQL语句或则usp影响的行计数信息. 当SET ONCOUNT ON时候,不返回计数,当SET NOCOUNT OFF时候, ...
- Flink的时间类型和watermark机制
一FlinkTime类型 有3类时间,分别是数据本身的产生时间.进入Flink系统的时间和被处理的时间,在Flink系统中的数据可以有三种时间属性: Event Time 是每条数据在其生产设备上发生 ...
- Swagger学习(一、入门)
简单 入门(效果) SwaggerConfig.class @Configuration //变成配置文件 @EnableSwagger2 //开启swagger2 public class Swag ...
- kali安装dnsdict6
https://src.fedoraproject.org/lookaside/pkgs/thc-ipv6/thc-ipv6-2.7.tar.gz/2975dd54be35b68c140eb2a6b8 ...
- Laravel使用whereHas进行过滤不符合条件的预加载with数据
问题描述:目前有用户表,文章表,文章评论表,收藏表.我需要获我的收藏文章列表(可以被搜索,通过分类,文章标题等),通过收藏预加载with文章表,文章评论表,文章用户表 解决办法:通过whereHas限 ...
- 原生JS-实现轮播图
用原生JS实现一个轮播图(效果) HTML <div id="outer"> <ul id="imgList"> <!-- 图片列 ...
- MySQL四舍五入函数ROUND(x)、ROUND(x,y)和TRUNCATE(x,y)
MySQL四舍五入函数ROUND(x) ROUND(x)函数返回最接近于参数x的整数,对x值进行四舍五入. 实例: 使用ROUND(x)函数对操作数进行四舍五入操作.SQL语句如下: mysql> ...