【LOJ】#3043. 「ZJOI2019」线段树
LOJ#3043. 「ZJOI2019」线段树
计数转期望的一道好题……
每个点设两个变量\(p,q\)表示这个点有\(p\)的概率有标记,有\(q\)的概率到祖先的路径上有个标记
被覆盖的点$0.5p + 0.5 \rightarrow p ,0.5q + 0.5\rightarrow q $
被覆盖的点子树中的点\(p\rightarrow p,0.5q + 0.5 \rightarrow q\)
经过的点\(0.5p \rightarrow p,0.5q \rightarrow q\)
未被经过,被pushdown,\(0.5p + 0.5q \rightarrow p,q\rightarrow q\)
根本没事\(p\rightarrow p,q\rightarrow q\)
最后统计\(p\)的和,设操作次数是\(tot\),乘上\(2^{tot}\)即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define MAXN 200005
#define ba 47
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int l,r,p,q,m,a;
}tr[MAXN * 4];
const int MOD = 998244353;
int N,ans,M,tot;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void upd(int &x,int y) {
x = inc(x,y);
}
void upm(int &x,int y) {
x = mul(x,y);
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void addlz(int u,int m,int a) {
upm(tr[u].m,m);upm(tr[u].a,m);
upd(tr[u].a,a);
upm(tr[u].q,m);upd(tr[u].q,a);
}
void pushdown(int u) {
addlz(u << 1,tr[u].m,tr[u].a);
addlz(u << 1 | 1,tr[u].m,tr[u].a);
tr[u].m = 1;tr[u].a = 0;
}
void build(int u,int l,int r) {
tr[u].l = l;tr[u].r = r;tr[u].a = 0;tr[u].m = 1;
if(l == r) return;
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
}
void get_diff(int &x,int y) {
upd(ans,inc(y,MOD - x));
x = y;
}
void Modify(int u,int l,int r) {
if(tr[u].l == l && tr[u].r == r) {
get_diff(tr[u].p,mul(tr[u].p + 1,(MOD + 1) / 2));
addlz(u,(MOD + 1) / 2,(MOD + 1) / 2);
return;
}
get_diff(tr[u].p,mul(tr[u].p,(MOD + 1) / 2));
tr[u].q = mul(tr[u].q,(MOD + 1) / 2);
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) {
Modify(u << 1,l,r);
get_diff(tr[u << 1 | 1].p,mul((MOD + 1) / 2,inc(tr[u << 1 | 1].p,tr[u << 1 | 1].q)));
}
else if(l > mid) {
Modify(u << 1 | 1,l,r);
get_diff(tr[u << 1].p,mul((MOD + 1) / 2,inc(tr[u << 1].p,tr[u << 1].q)));
}
else {
Modify(u << 1,l,mid);Modify(u << 1 | 1,mid + 1,r);
}
}
void Solve() {
read(N);read(M);
int op,l,r;
build(1,1,N);
for(int i = 1 ; i <= M ; ++i) {
read(op);
if(op == 1) {
read(l);read(r);
++tot;
Modify(1,l,r);
}
else {
out(mul(ans,fpow(2,tot)));enter;
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#3043. 「ZJOI2019」线段树的更多相关文章
- @loj - 3043@「ZJOI2019」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 九条可怜是一个喜欢数据结构的女孩子,在常见的数据结构中,可怜最喜 ...
- Loj #2570. 「ZJOI2017」线段树
Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...
- 「ZJOI2019」线段树 解题报告
「ZJOI2019」线段树 听说有人喷这个题简单,然后我就跑去做,然后自闭感++,rp++(雾) 理性分析一波,可以发现最后形成的\(2^k\)个线段树,对应的操作的一个子集,按时间顺序作用到这颗线段 ...
- LOJ 3043: 洛谷 P5280: 「ZJOI2019」线段树
题目传送门:LOJ #3043. 题意简述: 你需要模拟线段树的懒标记过程. 初始时有一棵什么标记都没有的 \(n\) 阶线段树. 每次修改会把当前所有的线段树复制一份,然后对于这些线段树实行一次区间 ...
- LOJ#3043.【ZJOI2019】 线段树 线段树,概率期望
原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day1T2.html 前言 在LOJ交了一下我的代码,发现它比选手机快将近 4 倍. 题解 对于线段树上每一个节 ...
- 「ZJOI2019」线段树
传送门 Description 线段树的核心是懒标记,下面是一个带懒标记的线段树的伪代码,其中 tag 数组为懒标记: 其中函数\(Lson(Node)\)表示\(Node\)的左儿子,\(Rson( ...
- @loj - 2093@ 「ZJOI2016」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...
- 【LOJ3043】「ZJOI2019」线段树
题面 问题可以转化为每次区间覆盖操作有 \(\frac{1}{2}\) 的概率进行,求标记和的期望.于是我们只要求出所有点有标记的概率即可. 我们设 \(f_i\) 表示节点 \(i\) 有标记的概率 ...
- 「模板」 线段树——区间乘 && 区间加 && 区间求和
「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...
随机推荐
- [Luogu] 引水入城
https://www.luogu.org/problemnew/show/P1514 bfs + 线段覆盖 #include<bits/stdc++.h> using namespace ...
- HZWER
我们的征途是星辰大海 2016年3月13日8,8077 尊敬的各位老师.亲爱的同学们: 大家好,我是高三(1)班的黄哲威.今天很荣幸能和大家分享一些有关竞赛的心得体会. 去年7月15日,第32届全国信 ...
- Selenium常见异常分析及解决方案
pycharm中导入selenium报错 现象: pycharm中输入from selenium import webdriver, selenium标红 原因1: pycharm使用的虚拟环境中没有 ...
- FatMouse's Speed
J - FatMouse's Speed DP的题写得多了慢慢也有了思路,虽然也还只是很简单的DP. 因为需要输出所有选择的老鼠,所以刚开始的时候想利用状态压缩来储存所选择的老鼠,后面才发现n太大1& ...
- Vue 使用百度地图组件
npm 安装 npm install vue-baidu-map --save组件官网地址 https://dafrok.github.io/vue-baidu-map/#/
- IDEA checkout Git 分支 弹出 Git Checkout Problem
1. 本地分支切换的时候(例如A切到B),会弹出来Restore workspace on branch switching 对话框,如果选择是的话,在切换分支的时候,你在当前分支(A)所做的一些还未 ...
- 预处理、const、static与sizeof-用#define实现宏并求最大值和最小值
1:实现代码: #define MAX(x,y) (((x)>(y)) ? (x):(y)) #define MIN(x,y) (((x)>(y)) ? (x):(y)) 需要注意的几点: ...
- 【零基础】Selenium:Webdriver图文入门教程java篇(附相关包下载)
一.selenium2.0简述 与一般的浏览器测试框架(爬虫框架)不同,Selenium2.0实际上由两个部分组成Selenium+webdriver,Selenium负责用户指令的解释(code), ...
- js最简洁的时间对象转成时间字符串的方法
getTimestr(val){ let temp = val.toLocaleString() if(temp.match(/[\u4e00-\u9fa5]/g)[0]=="上" ...
- linux设备树中如何删除某个节点?
答:使用以下语法即可删除某节点: /delete-node/ 节点名;