面向领域特定目标的对话系统通常需要建模三种类型的输入,即(i)与领域相关的知识库,(ii)对话的历史(即话语序列)和(iii)需要生成响应的当前话语。

在对这些输入进行建模时,当前最先进的模型(如Mem2Seq)通常会忽略知识图和对话上下文中的句子中固有的丰富结构。

受最近结构感知图卷积成功的启发针对各种NLP任务,如机器翻译、语义角色标记和文档日期,我们提出了一种增强记忆的GCN用于面向目标的对话。

我们的模型利用(i)知识库中的实体关系图和(ii)与话语相关联的依赖图来计算词汇和实体的更丰富的表示。

此外,我们还注意到,在某些情况下,例如,当会话使用代码混合语言时,依赖解析器可能不可用。在这种情况下,我们可以使用全局词共现图来丰富话语的表征。

More specifically, there is some structure associated with the utterances as well as the knowledge base.

Current state-of-the-art methods (Seo et al., 2017; Eric & Manning, 2017; Madotto et al., 2018) typically use variants of Recurrent Neural Network (Elman, 1990) to encode the history and current utterance and an external memory network to store the entities in the knowledge base. The encodings of the utterances and memory elements are then suitably combined using an attention network and fed to the decoder to generate the response, one word at a time. However, these methods do not exploit the structure in the knowledge base as defined by entity-entity relations and the structure in the utterances as defined by a dependency parse.

但是,这些方法并未利用实体-实体关系定义的知识库结构和依存关系解析定义的话语结构。

dependency parse tree

GRAPH CONVOLUTIONAL NETWORK WITH SEQUENTIAL ATTENTION FOR GOAL-ORIENTED DIALOGUE SYSTEMS的更多相关文章

  1. Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

    Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为 ...

  2. 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 代码解读

    论文链接:https://arxiv.org/abs/1811.05320 博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 解读 ...

  3. Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning

    创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 cha ...

  4. Graph Convolutional Network

    How to do Deep Learning on Graphs with Graph Convolutional Networks https://towardsdatascience.com/h ...

  5. GCN(Graph Convolutional Network)的简单公式推导

    第一步:从前一个隐藏层到后一个隐藏层,对结点进行特征变换 第二步:对第一步进行具体实现 第三步:对邻接矩阵进行归一化(行之和为1) 邻接矩阵A的归一化,可以通过度矩阵D来实现(即通过D^-1*A来实现 ...

  6. GCN: Graph Convolutional Network

    从CNN到GCN的联系与区别: https://www.zhihu.com/question/54504471/answer/332657604 更加详解Laplacian矩阵: https://ww ...

  7. 关于Graph Convolutional Network的初步理解

    为给之后关于图卷积网络的科研做知识积累,这里写一篇关于GCN基本理解的博客.GCN的本质是一个图网络中,特征信息的交互+与传播.这里的图指的不是图片,而是数据结构中的图,图卷积网络的应用非常广泛 ,经 ...

  8. 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 论文解读

    论文链接:https://arxiv.org/abs/1811.05320 最近发现博客好像会被CSDN和一些奇怪的野鸡网站爬下来?看见有人跟爬虫机器人单方面讨论问题我也蛮无奈的.总之原作者Misso ...

  9. Emotion Recognition Using Graph Convolutional Networks

    Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https: ...

随机推荐

  1. FreeRTOS --(4)内存管理 heap3

    转载自 https://blog.csdn.net/zhoutaopower/article/details/106677144 heap3 来说,是直接使用了 malloc 和 free 来直接替代 ...

  2. 【ACM程序设计】并查集

    并查集 并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有:求连通子图.求最小生成树的Kruskal算法和求最近公共祖先( ...

  3. Linux 或 Windows 上实现端口映射

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 通常服务器会有许多块网卡,因此也可能会连接到不同的网络, ...

  4. 实战 | Linux根分区扩容

    一个执着于技术的公众号 一个执着于技术的公众号 前言 Linux系统作为服务器操作系统,经常遇到一个问题就是服务器分区磁盘空间不足需要扩容的情况.本文以linux系统最常见的发行版centos7系统为 ...

  5. MySQL 高频面试题,都在这了

    点击上方"开源Linux",选择"设为星标"回复"学习"获取独家整理的学习资料! 前言 本文主要受众为开发人员,所以不涉及到MySQL的服务 ...

  6. Linux-I/O模型详解

    I/O介绍 I/O通常有内存IO.网络I/O.磁盘I/O等,但我们通常说的是网络I/O以及磁盘I/O.网络I/O:本质是socket读取 每次I/O请求,都会有两个阶段组成: 第一步:等待数据,即数据 ...

  7. 【python疫情可视化】用pyecharts开发全国疫情动态地图,效果酷炫!

    一.效果演示 我用python开发了一个动态疫情地图,首先看下效果: 如图所示,地图根据实时数据通过时间线轮播的方式,动态展示数据的变化.随着时间的推移,疫情确诊数量的增多,地图各个省份颜色逐渐加深, ...

  8. slice-substring-substr-split-splice

    一.字符串slice(startIndex, endBeforeIndex) endBeforeIndex < 0,则 endBeforeIndex 为 负数,第二个参数为字符串长度加上负值,之 ...

  9. 操作系统实现-printk

    博客网址:www.shicoder.top 微信:18223081347 欢迎加群聊天 :452380935 这一次我们来实现最基础,也是最常见的函数print,大家都知道这个是可变参数函数,那具体怎 ...

  10. 637. Average of Levels in Binary Tree - LeetCode

    Question 637. Average of Levels in Binary Tree Solution 思路:定义一个map,层数作为key,value保存每层的元素个数和所有元素的和,遍历这 ...