题目大意

有一个 \(n\times m\) 的方阵,每次有 \((x,y)\) 离开,离开后有两个命令

  1. 向左看齐。这时第一列保持不动,所有学生向左填补空缺。这条指令之后,空位在第 \(x\) 行第 \(m\) 列。
  2. 向前看齐。这时第一行保持不动,所有学生向前填补空缺。这条指令之后,空位在第 \(n\) 行第 \(m\) 列。

最后 \((x,y)\) 回到 \((n,m)\)

现在问每次离队的人的编号。 \((i,j)\) 的编号是 \((i-1)*m+j\)

题解

对每一行前 \(m-1\) 个建 \(n\) 个权值线段树,对第 \(m\) 列单独建。

线段树记录区间离开的个数

因为把一个点加入线段树十分麻烦,考虑用 \(n+1\) 个 \(vector\) 来保存加入的数

接着分类讨论

  1. \(y==m\),就是只有向前看齐。直接在第 \(n+1\) 颗线段树中 \(x\) 的实际位置 \(pos\)

    若 \(pos<=n\) 则没有删除,答案为 \(pos*m\) ,否则在 \(vector\) 中

  2. \(y<m\) ,先向左看齐。在第 \(x\) 颗线段树中查询 \(y\) 的实际位置 \(pos\)

    若 \(y<m\) 则没有删除,否则在 \(vector\) 中。得到答案再向前看齐

    向前看齐加入 \(vector\) 的编号为这里得到的编号

  3. 每次得到答案就把它加入对应的 \(vector\) 中。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int n,m,T,pos,maxx,tot,sm[6000000],rt[6000000],ls[6000000],rs[6000000];
vector<LL>del[300005];
int Kth(int k,int l,int r,int rt) {
if(l==r)return l;
register int mid=l+r>>1,tmp=mid-l+1-sm[ls[rt]];
return k<=tmp?Kth(k,l,mid,ls[rt]):Kth(k-tmp,mid+1,r,rs[rt]);
}
void Modify(int p,int l,int r,int &rt) {
if(!rt)rt=++tot; ++sm[rt];
if(l==r)return;
register int mid=l+r>>1;
if(p<=mid)Modify(p,l,mid,ls[rt]);
else Modify(p,mid+1,r,rs[rt]);
}
inline LL Sz(int x,LL y) {
pos=Kth(x,1,maxx,rt[n+1]);
Modify(pos,1,maxx,rt[n+1]);
register LL res;
if(pos<=n)res=1LL*pos*m;
else res=del[n+1][pos-n-1];
del[n+1].push_back(y?y:res);
return res;
}
inline LL Hz(int x,LL y) {
pos=Kth(y,1,maxx,rt[x]);
Modify(pos,1,maxx,rt[x]);
register LL res;
if(pos<m)res=1LL*(x-1)*m+pos;
else res=del[x][pos-m];
del[x].push_back(Sz(x,res));
return res;
}
int main() {
freopen("phalanx.in","r",stdin);
freopen("phalanx.out","w",stdout);
scanf("%d%d%d",&n,&m,&T),maxx=max(n,m)+T;
for(int u,v;T--;) {
scanf("%d%d",&u,&v);
if(v==m)printf("%lld\n",Sz(u,0));
else printf("%lld\n",Hz(u,v));
}
}

【NOIP2017 提高组正式赛】列队 题解的更多相关文章

  1. [jzoj]5478.【NOIP2017提高组正式赛】列队

    Link https://jzoj.net/senior/#main/show/5478 Description Sylvia 是一个热爱学习的女孩子.       前段时间,Sylvia 参加了学校 ...

  2. NOIP2017提高组 模拟赛15(总结)

    NOIP2017提高组 模拟赛15(总结) 第一题 讨厌整除的小明 [题目描述] 小明作为一个数学迷,总会出于数字的一些性质喜欢上某个数字,然而当他喜欢数字k的时候,却十分讨厌那些能够整除k而比k小的 ...

  3. NOIP2017提高组 模拟赛13(总结)

    NOIP2017提高组 模拟赛13(总结) 第一题 函数 [题目描述] [输入格式] 三个整数. 1≤t<10^9+7,2≤l≤r≤5*10^6 [输出格式] 一个整数. [输出样例] 2 2 ...

  4. NOIP2017提高组模拟赛 10 (总结)

    NOIP2017提高组模拟赛 10 (总结) 第一题 机密信息 FJ有个很奇怪的习惯,他把他所有的机密信息都存放在一个叫机密盘的磁盘分区里,然而这个机密盘中却没有一个文件,那他是怎么存放信息呢?聪明的 ...

  5. NOIP2017提高组模拟赛 8(总结)

    NOIP2017提高组模拟赛 8(总结) 第一题 路径 在二维坐标平面里有N个整数点,Bessie要访问这N个点.刚开始Bessie在点(0,0)处. 每一步,Bessie可以走到上.下.左.右四个点 ...

  6. NOIP2017提高组模拟赛 9 (总结)

    NOIP2017提高组模拟赛 9 (总结) 第一题 星星 天空中有N(1≤N≤400)颗星,每颗星有一个唯一的坐标(x,y),(1≤x,y ≤N).请计算可以覆盖至少K(1≤K≤N)颗星的矩形的最小面 ...

  7. NOIP2017提高组模拟赛 7(总结)

    NOIP2017提高组模拟赛 7(总结) 第一题 斯诺克 考虑这样一个斯诺克球台,它只有四个袋口,分别在四个角上(如下图所示).我们把所有桌子边界上的整数点作为击球点(除了4个袋口),在每个击球点我们 ...

  8. NOIP2017提高组模拟赛5 (总结)

    NOIP2017提高组模拟赛5 (总结) 第一题 最远 奶牛们想建立一个新的城市.它们想建立一条长度为N (1 <= N <= 1,000,000)的 主线大街,然后建立K条 (2 < ...

  9. NOIP2017提高组模拟赛4 (总结)

    NOIP2017提高组模拟赛4 (总结) 第一题 约数 设K是一个正整数,设X是K的约数,且X不等于1也不等于K. 加了X后,K的值就变大了,你可以重复上面的步骤.例如K= 4,我们可以用上面的规则产 ...

随机推荐

  1. IO流的简单实现

    IO流的几种实现方式 学习目标: 例题: 字节输出流 字节输入流 字符输入流 字符输出流 学习目标: 熟练掌握IO流的基本实现方式 例题: 字节输出流 代码如下: public class Outpu ...

  2. PL/SQL中的 not

    ELECT * FROM table_name WHERE column_name not like'%山%' 這時出現了column_name中為null值的情況也被剔掉了. 原因是:在SQL的表達 ...

  3. mycat实现主从读取中的问题

    schema.xml 中的配置如下:..... <dataHost name="aaa" maxCon="2000" minCon="100&q ...

  4. Java 8 学习记录

    Java 8 学习记录 官方文档 https://docs.oracle.com/javase/8/ https://docs.oracle.com/javase/8/docs/index.html ...

  5. php个人博客搭建第二阶段②

    网站正文部分:热门博客的推荐: html代码: <!-- 网站正文部分 -->     <div class="content">         < ...

  6. python基础练习题(题目 矩阵对角线之和)

    day25 --------------------------------------------------------------- 实例038:矩阵对角线之和 题目 求一个3*3矩阵主对角线元 ...

  7. HTML续集

    计算机中PC:电脑 移动端:智能手机/智能电脑 html:超文本标记语言 图片标签<img src=" "> 图片的格式类型都有哪些? jpg,peg,gif(动图) ...

  8. 【ConcurrentHashMap】浅析ConcurrentHashMap的构造方法及put方法(JDK1.7)

    目录 引言 代码讲解 构造方法 put方法 ensureSegment Segment.put 引言 ConcurrentHashMap的数据结构如下. 和HashMap的最大区别在于多了一层Segm ...

  9. 论文解读《Measuring and Relieving the Over-smoothing Problem for Graph NeuralNetworks from the Topological View》

    论文信息 论文标题:Measuring and Relieving the Over-smoothing Problem for Graph NeuralNetworks from the Topol ...

  10. mybatis两种嵌套查询方式

    1,推荐用第一种 <select id="getTeacher2" resultMap="TeacherStudent"> select s.id ...