吴恩达老师机器学习课程chapter08——降维

本文是非计算机专业新手的自学笔记,高手勿喷。

本文仅作速查备忘之用,对应吴恩达(AndrewNg)老师的机器学期课程第十四章。

本章节只有结论,没有任何推演过程,仅作了解入门。



基本概念

降维操作可以压缩数据以节约内存,加速算法;还可以为可视化提供便利。

比如,从二维降维至一维:

比如,从三维降维至二维:


主成分分析法(Principal Component Analysis)

PCA要做的,是寻找到高维空间中,类似于图中红线,而不是图中洋红线,这样的平面。通过这些平面对数据进行降维操作。

样本在这些平面上的投影记作记作\(x^{(i)}_{approx}\)。

要最小化的是平方投影误差。这与回归算法是有区别的。下图中,左侧是回归算法,右侧是PCA算法:

操作

课程中只给出了PCA的操作步骤,没有任何推导:

首先,计算矩阵

\[\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{T}
\]

之后,进行SVD操作,即奇值分解(Singular Value Decomposition)。这里没有说明具体操作。

得到U矩阵的形状为 n x m,取前 k列,得到新的矩阵——形状为n x k的\(U_{reduce}\)。

$ z^{(i)} = U_{reduce}^T \times x^{(i)}$。完成降维操作。

主成分数k的选择

选择的K值应当使得

\[\frac{ 平均投影误差平方(average\ squared\ projection\ components) }{ 数据总方差(total\ total variation\ in \ the \ deta ) } \le 0.01
\]

也就叫做 “ 保留99%的方差性 ”。95%、90%、85%也是常用的。

另有计算方法如下:

在奇值分解过程中还会得到n x n的S矩阵,\(s_{ii}\)表示S矩阵对角线元素。

K的选择需要满足:

\[1-\frac{\sum_{i=1}^{k} S_{i i} }{\sum_{i=1}^{n} S_{i i} } \leqslant 0.01
\]

这里0.01与上一种方法的含义是一样的。


重构

重构指的是将降维过的数据还原回原本数据的过程。

压缩重现计算方法为 $ x_{approx}^{(i)} = U_{reduce}^T \times z^{(i)}$

  • PCA并不总是解决过拟合的好办法。
  • 先不使用PCA,之后在考察是否需要PCA。

吴恩达老师机器学习课程chapter08——降维的更多相关文章

  1. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  2. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  3. 吴恩达《机器学习》课程总结(5)_logistic回归

    Q1分类问题 回归问题的输出可能是很大的数,而在分类问题中,比如二分类,希望输出的值是0或1,如何将回归输出的值转换成分类的输出0,1成为关键.注意logistics回归又称 逻辑回归,但他是分类问题 ...

  4. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  5. 吴恩达《机器学习》课程笔记——第七章:Logistic回归

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 7.1 分类问题 本节内容:什么是分类 之前的章节介绍的都是回归问题,接下来是分类问题.所谓的分类问题是指输出变量为有限个离散 ...

  6. 吴恩达《机器学习》课程总结(18)_照片OCR

    18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字. (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首 ...

  7. 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归

    ❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...

  8. 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)

    1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...

  9. 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)

    1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当 ...

  10. 跟我学算法-吴恩达老师的logsitic回归

    logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率 A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数 dz ...

随机推荐

  1. 快捷方法1:csdn如何不登录复制代码

    按F12,在console里执行下面两句代码 $("#content_views pre").css("user-select","text" ...

  2. 布尔类型:boolean

    布尔类型 基本介绍 布尔类型也叫boolean类型,其数据只允许取值true和false,无null boolean类型占1个字节 boolean类型适于逻辑运算,一般用于程序流程控制: if条件控制 ...

  3. golang for 循环

    1.for 循环 for循环是Golang唯一的循环语句. for 初始表达式; 布尔表达式; 迭代因子 { 循环体; } package main import "fmt" fu ...

  4. Android图表控件MPAndroidChart——BarChart实现多列柱状图和LineChart多曲线 (完结)

    首先才接触Android,目前自学一个月,花了一星期,做出了柱状图和曲线图,踩过坑也不少,上代码(主要提供思路,大部分代码可直接用). 参考代码地址:①曲线:https://blog.csdn.net ...

  5. IIS 安装AspNetCoreModule托管模块

    IIS安装AspNetCoreModule托管模块 进入下载地址,选在对应的版本搜索 ASP.NET Core Module 下载x32或x64即可 下载地址: https://dotnet.micr ...

  6. 070_GET https://login.salesforce.com/17181/logo180.png 404 (Not Found)

    这个问题怎么解答? Google了一下:https://success.salesforce.com/answers?id=90630000000D6qzAAC 谷歌应用商店安装了一个 Resourc ...

  7. JS form表单数据校验及失效情况下的解决方案

    如下图,当执行提交操作之前,我们需要对序号,要求完成时间,责任人,措施内容四项进行非空,字符长度及输入内容的类型进行校验. 直接贴样式代码 <div class="wrapper an ...

  8. Python学习—计算机与操作系统简介

    计算机与操作系统简介 一.操作系统的主要发展史 1.手工操作--卡片穿孔 1946年第一台计算机诞生--20世纪50年代中期,计算机工作还在采用手工操作方式.此时还没有操作系统的概念.程序员将对应于程 ...

  9. kafka在阿里云上的配置

    只需要改server.properties listeners=PLAINTEXT://  内网的ip地址和9092端口advertised.listeners=PLAINTEXT://外网的ip的地 ...

  10. 【傻瓜式教学】apache2 管理员用户运行(php无权限问题

    apache2 管理员用户运行(php无权限问题 代码亲身试过,绝无问题 apache版本: Server version: Apache/2.4.38 (Debian) Server built: ...