#include <cstdio>
#include <iostream>
#define re register
using namespace std;
typedef long long LL; const int N = 3e5 + 5, P = 998244353, g = 3;
int rev[N], n;
LL a[N], b[N], c[N]; inline int fpow(LL x, int y)
{
LL res = 1;
for(; y; y >>= 1, x = x * x % P) if (y & 1) res = res * x % P;
return res;
} inline void NTT(LL *a, int len, int inv)
{
if (len == 1) return;
for(re int i = 1; i < len; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1, I; mid < len; mid <<= 1)
{
I = fpow(g, (P - 1) / (mid << 1));
if (inv == -1) I = fpow(I, P - 2);
for(re int i = 0, W; i < len; i += mid << 1)
{
W = 1;
for(re int j = 0, x, y; j < mid; j++, W = 1LL * W * I % P)
x = a[i + j], y = a[i + j + mid] * W % P,
a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
}
}
} void solve(int n, LL *a, LL *b)
{
if (n == 1) return void(b[0] = fpow(a[0], P - 2));
solve((n + 1) >> 1, a, b);
int len = 1, bit = 0;
while (len < (n << 1)) len <<= 1, bit++;
for(re int i = 0; i < len; i++) rev[i] = ((rev[i >> 1] >> 1) | (i & 1) << bit - 1);
for(re int i = 0; i < n; i++) c[i] = a[i];
for(re int i = n; i < len; i++) c[i] = 0;
NTT(c, len, 1), NTT(b, len, 1);
for(re int i = 0; i < len; i++) b[i] = b[i] * (2LL - b[i] * c[i] % P + P) % P;
NTT(b, len, -1);
int inv = fpow(len, P - 2);
for(re int i = 0; i < n; i++) b[i] = b[i] * inv % P;
for(re int i = n; i < len; i++) b[i] = 0;
} int main()
{
scanf("%d", &n);
for(re int i = 0; i < n; i++) scanf("%lld", &a[i]);
solve(n, a, b);
for(re int i = 0; i < n; i++) printf("%lld ", b[i]);
}

P4238 【模板】多项式乘法逆的更多相关文章

  1. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  2. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  3. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  4. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  5. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  6. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  7. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  8. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  9. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  10. 洛谷P4238【模板】多项式求逆

    洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...

随机推荐

  1. 7 STL-deque

    ​ 重新系统学习c++语言,并将学习过程中的知识在这里抄录.总结.沉淀.同时希望对刷到的朋友有所帮助,一起加油哦!  生命就像一朵花,要拼尽全力绽放!死磕自个儿,身心愉悦! 写在前面,本篇章主要介绍S ...

  2. 快速创建Jenkins Job

    Jenkins Job 类型 **1.Freestyle project ** 这个是jenkins的基础功能,可以用它来执行各种构建任务,他只能构建在一个电脑上,如果没有太多的需求,这个job基本够 ...

  3. GitOps实践之kubernetes安装argocd

    1. 什么是argocd 1.Argo CD是Kubernetes的一个声明性GitOps持续交付工具. 2.应用程序定义.配置和环境应该是声明性的和版本控制的.应用程序部署和生命周期管理应自动化.可 ...

  4. 【机器学习】李宏毅——Flow-based Generative Models

    前文我介绍了部分关于生成学习的内容,可以参考我这篇博文点此 前面介绍的各个生成模型,都存在一定的问题: 对于PixelRNN这类模型来说,就是从左上角的像素开始一个个地进行生成,那么这个生成顺序是否合 ...

  5. JavaScript:操作符:比较运算符及其隐式转换数据类型

    不等关系 即大于>:大于等于>=:小于<:小于等于<= 当比较的两个变量,有非数字时,会隐式转换为数字再比较,转换情况同算术运算符: 当两个变量均为字符串时,不会进行转换,而是 ...

  6. cmd命令行ssh连接Linux服务器

    打开cmd工具 使用命令ssh连接服务器 ssh 用户名@ip地址 (不需要指定端口号,默认端口就是22) 输入密码即可

  7. Redis学习整理

    目录 1.Redis基本概念 2.Redis的5种基本类型 3.Jedis整合redis操作 4.Springboot整合redis 5.Redis主从复制 5.1.概念 5.2.原理 6.开启主从复 ...

  8. Ynoi 数据结构题选做

    Ynoi 数据结构题选做 前言 我将成为数据结构之神!坚持 lxl 党的领导,紧随 nzhtl1477(女装灰太狼1477)的脚步.无论过去.现在还是未来,分块始终是实现 data structure ...

  9. Js文件名 排序

    参考了别人帖子后,调整之后的排序方法,更加精确.(参考链接在底部) 压缩版 function strCompare(str1,str2){if(str1==undefined&&str ...

  10. 前端 - JaveScrip

    今日内容 JS简介 全程JaveScript但是与Jave没有关系 知识为了蹭Jave热度 它是一门前端工程师的编程语言 但是它本身有很多逻辑错误 IT行业鄙视链:前端.运维.测试.产品 前端想一统天 ...