P4238 【模板】多项式乘法逆
#include <cstdio>
#include <iostream>
#define re register
using namespace std;
typedef long long LL;
const int N = 3e5 + 5, P = 998244353, g = 3;
int rev[N], n;
LL a[N], b[N], c[N];
inline int fpow(LL x, int y)
{
LL res = 1;
for(; y; y >>= 1, x = x * x % P) if (y & 1) res = res * x % P;
return res;
}
inline void NTT(LL *a, int len, int inv)
{
if (len == 1) return;
for(re int i = 1; i < len; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1, I; mid < len; mid <<= 1)
{
I = fpow(g, (P - 1) / (mid << 1));
if (inv == -1) I = fpow(I, P - 2);
for(re int i = 0, W; i < len; i += mid << 1)
{
W = 1;
for(re int j = 0, x, y; j < mid; j++, W = 1LL * W * I % P)
x = a[i + j], y = a[i + j + mid] * W % P,
a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
}
}
}
void solve(int n, LL *a, LL *b)
{
if (n == 1) return void(b[0] = fpow(a[0], P - 2));
solve((n + 1) >> 1, a, b);
int len = 1, bit = 0;
while (len < (n << 1)) len <<= 1, bit++;
for(re int i = 0; i < len; i++) rev[i] = ((rev[i >> 1] >> 1) | (i & 1) << bit - 1);
for(re int i = 0; i < n; i++) c[i] = a[i];
for(re int i = n; i < len; i++) c[i] = 0;
NTT(c, len, 1), NTT(b, len, 1);
for(re int i = 0; i < len; i++) b[i] = b[i] * (2LL - b[i] * c[i] % P + P) % P;
NTT(b, len, -1);
int inv = fpow(len, P - 2);
for(re int i = 0; i < n; i++) b[i] = b[i] * inv % P;
for(re int i = n; i < len; i++) b[i] = 0;
}
int main()
{
scanf("%d", &n);
for(re int i = 0; i < n; i++) scanf("%lld", &a[i]);
solve(n, a, b);
for(re int i = 0; i < n; i++) printf("%lld ", b[i]);
}
P4238 【模板】多项式乘法逆的更多相关文章
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- [模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
随机推荐
- 7 STL-deque
重新系统学习c++语言,并将学习过程中的知识在这里抄录.总结.沉淀.同时希望对刷到的朋友有所帮助,一起加油哦! 生命就像一朵花,要拼尽全力绽放!死磕自个儿,身心愉悦! 写在前面,本篇章主要介绍S ...
- 快速创建Jenkins Job
Jenkins Job 类型 **1.Freestyle project ** 这个是jenkins的基础功能,可以用它来执行各种构建任务,他只能构建在一个电脑上,如果没有太多的需求,这个job基本够 ...
- GitOps实践之kubernetes安装argocd
1. 什么是argocd 1.Argo CD是Kubernetes的一个声明性GitOps持续交付工具. 2.应用程序定义.配置和环境应该是声明性的和版本控制的.应用程序部署和生命周期管理应自动化.可 ...
- 【机器学习】李宏毅——Flow-based Generative Models
前文我介绍了部分关于生成学习的内容,可以参考我这篇博文点此 前面介绍的各个生成模型,都存在一定的问题: 对于PixelRNN这类模型来说,就是从左上角的像素开始一个个地进行生成,那么这个生成顺序是否合 ...
- JavaScript:操作符:比较运算符及其隐式转换数据类型
不等关系 即大于>:大于等于>=:小于<:小于等于<= 当比较的两个变量,有非数字时,会隐式转换为数字再比较,转换情况同算术运算符: 当两个变量均为字符串时,不会进行转换,而是 ...
- cmd命令行ssh连接Linux服务器
打开cmd工具 使用命令ssh连接服务器 ssh 用户名@ip地址 (不需要指定端口号,默认端口就是22) 输入密码即可
- Redis学习整理
目录 1.Redis基本概念 2.Redis的5种基本类型 3.Jedis整合redis操作 4.Springboot整合redis 5.Redis主从复制 5.1.概念 5.2.原理 6.开启主从复 ...
- Ynoi 数据结构题选做
Ynoi 数据结构题选做 前言 我将成为数据结构之神!坚持 lxl 党的领导,紧随 nzhtl1477(女装灰太狼1477)的脚步.无论过去.现在还是未来,分块始终是实现 data structure ...
- Js文件名 排序
参考了别人帖子后,调整之后的排序方法,更加精确.(参考链接在底部) 压缩版 function strCompare(str1,str2){if(str1==undefined&&str ...
- 前端 - JaveScrip
今日内容 JS简介 全程JaveScript但是与Jave没有关系 知识为了蹭Jave热度 它是一门前端工程师的编程语言 但是它本身有很多逻辑错误 IT行业鄙视链:前端.运维.测试.产品 前端想一统天 ...