概述

本教程假定你已经对于 PyToch 训练一个简单模型有一定的基础理解。本教程将展示使用 3 种封装层级不同的方法调用 DDP (DistributedDataParallel) 进程,在多个 GPU 上训练同一个模型:

  • 使用 pytorch.distributed 模块的原生 PyTorch DDP 模块
  • 使用 Accelerate 对 pytorch.distributed 的轻量封装,确保程序可以在不修改代码或者少量修改代码的情况下在单个 GPU 或 TPU 下正常运行
  • 使用 Transformer 的高级 Trainer API ,该 API 抽象封装了所有代码模板并且支持不同设备和分布式场景。

什么是分布式训练,为什么它很重要?

下面是一些非常基础的 PyTorch 训练代码,它基于 Pytorch 官方在 MNIST 上创建和训练模型的示例

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms class BasicNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
self.act = F.relu def forward(self, x):
x = self.act(self.conv1(x))
x = self.act(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.act(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output

我们定义训练设备 (cuda):

device = "cuda"

构建一些基本的 PyTorch DataLoaders:

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)

把模型放入 CUDA 设备:

model = BasicNet().to(device)

构建 PyTorch optimizer (优化器)

optimizer = optim.AdamW(model.parameters(), lr=1e-3)

最终创建一个简单的训练和评估循环,训练循环会使用全部训练数据集进行训练,评估循环会计算训练后模型在测试数据集上的准确度:

model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad() model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

通常从这里开始,就可以将所有的代码放入 Python 脚本或在 Jupyter Notebook 上运行它。

然而,只执行 python myscript.py 只会使用单个 GPU 运行脚本。如果有多个 GPU 资源可用,您将如何让这个脚本在两个 GPU 或多台机器上运行,通过分布式训练提高训练速度?这是 torch.distributed 发挥作用的地方。

PyTorch 分布式数据并行

顾名思义,torch.distributed 旨在配置分布式训练。你可以使用它配置多个节点进行训练,例如:多机器下的单个 GPU,或者单台机器下的多个 GPU,或者两者的任意组合。

为了将上述代码转换为分布式训练,必须首先定义一些设置配置,具体细节请参阅 DDP 使用教程

首先必须声明 setupcleanup 函数。这将创建一个进程组,并且所有计算进程都可以通过这个进程组通信。

注意:在本教程的这一部分中,假定这些代码是在 Python 脚本文件中启动。稍后将讨论使用 Accelerate 的启动器,就不必声明 setupcleanup 函数了

import os
import torch.distributed as dist def setup(rank, world_size):
"Sets up the process group and configuration for PyTorch Distributed Data Parallelism"
os.environ["MASTER_ADDR"] = 'localhost'
os.environ["MASTER_PORT"] = "12355" # Initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size) def cleanup():
"Cleans up the distributed environment"
dist.destroy_process_group()

最后一个疑问是,我怎样把我的数据和模型发送到另一个 GPU 上?

这正是 DistributedDataParallel 模块发挥作用的地方, 它将您的模型复制到每个 GPU 上 ,并且当 loss.backward() 被调用进行反向传播的时候,所有这些模型副本的梯度将被同步地平均/下降 (reduce)。这确保每个设备在执行优化器步骤后具有相同的权重。

下面是我们的训练设置示例,我们使用了 DistributedDataParallel 重构了训练函数:

注意:此处的 rank 是当前 GPU 与所有其他可用 GPU 相比的总体 rank,这意味着它们的 rank 为 0 -> n-1

from torch.nn.parallel import DistributedDataParallel as DDP

def train(model, rank, world_size):
setup(rank, world_size)
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3)
# Train for one epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
cleanup()

在上述的代码中需要为每个副本设备上的模型 (因此在这里是ddp_model的参数而不是 model 的参数) 声明优化器,以便正确计算每个副本设备上的梯度。

最后,要运行脚本,PyTorch 有一个方便的 torchrun 命令行模块可以提供帮助。只需传入它应该使用的节点数以及要运行的脚本即可:

torchrun --nproc_per_nodes=2 --nnodes=1 example_script.py

上面的代码可以在在一台机器上的两个 GPU 上运行训练脚本,这是使用 PyTorch 只进行分布式训练的情况 (不可以在单机单卡上运行)。

现在让我们谈谈 Accelerate,一个旨在使并行化更加无缝并有助于一些最佳实践的库。

Accelerate

Accelerate 是一个库,旨在无需大幅修改代码的情况下完成并行化。除此之外, Accelerate 附带的数据 pipeline 还可以提高代码的性能。

首先,让我们将刚刚执行的所有上述代码封装到一个函数中,以帮助我们直观地看到差异:

def train_ddp(rank, world_size):
setup(rank, world_size)
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank]) # Build optimizer
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3) # Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad() # Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

接下来让我们谈谈 Accelerate 如何便利地实现并行化的。上面的代码有几个问题:

  1. 该代码有点低效,因为每个设备都会创建一个 dataloader
  2. 这些代码只能运行在多 GPU 下,当想让这个代码运行在单个 GPU 或 TPU 时,还需要额外进行一些修改。

Accelerate 通过 Accelerator 类解决上述问题。通过它,不论是单节点还是多节点,除了三行代码外,其余代码几乎保持不变,如下所示:

def train_ddp_accelerate():
accelerator = Accelerator()
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model
model = BasicModel() # Build optimizer
optimizer = optim.AdamW(model.parameters(), lr=1e-3) # Send everything through `accelerator.prepare`
train_loader, test_loader, model, optimizer = accelerator.prepare(
train_loader, test_loader, model, optimizer
) # Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
output = model(data)
loss = F.nll_loss(output, target)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad() # Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

借助 Accelerator 对象,您的 PyTorch 训练循环现在已配置为可以在任何分布式情况运行。使用 Accelerator 改造后的代码仍然可以通过 torchrun CLI 或通过 Accelerate 自己的 CLI 界面启动(启动你的 Accelerate 脚本)。

因此,现在可以尽可能保持 PyTorch 原生代码不变的前提下,使用 Accelerate 执行分布式训练。

早些时候有人提到 Accelerate 还可以使 DataLoaders 更高效。这是通过自定义采样器实现的,它可以在训练期间自动将部分批次发送到不同的设备,从而允许每个设备只需要储存数据的一部分,而不是一次将数据复制四份存入内存,具体取决于配置。因此,内存总量中只有原始数据集的一个完整副本。该数据集会拆分后分配到各个训练节点上,从而允许在单个实例上训练更大的数据集,而不会使内存爆炸

使用 notebook_launcher

之前提到您可以直接从 Jupyter Notebook 运行分布式代码。这来自 Accelerate 的 notebook_launcher 模块,它可以在 Jupyter Notebook 内部的代码启动多 GPU 训练。

使用它就像导入 launcher 一样简单:

from accelerate import notebook_launcher

接着传递我们之前声明的训练函数、要传递的任何参数以及要使用的进程数(例如 TPU 上的 8 个,或两个 GPU 上的 2 个)。下面两个训练函数都可以运行,但请注意,启动单次启动后,实例需要重新启动才能产生另一个:

notebook_launcher(train_ddp, args=(), num_processes=2)

或者:

notebook_launcher(train_accelerate_ddp, args=(), num_processes=2)

使用 Trainer

终于我们来到了最高级的 API——Hugging Face Trainer.

它涵盖了尽可能多的训练类型,同时仍然能够在分布式系统上进行训练,用户根本不需要做任何事情。

首先我们需要导入 Trainer:

from transformers import Trainer

然后我们定义一些 TrainingArguments 来控制所有常用的超参数。 Trainer 需要的训练数据是字典类型的,因此需要制作自定义整理功能。

最后,我们将训练器子类化并编写我们自己的 compute_loss.

之后,这段代码也可以分布式运行,而无需修改任何训练代码!

from transformers import Trainer, TrainingArguments

model = BasicNet()

training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
) def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
)
trainer.train()
***** Running training *****
Num examples = 60000
Num Epochs = 1
Instantaneous batch size per device = 64
Total train batch size (w. parallel, distributed & accumulation) = 64
Gradient Accumulation steps = 1
Total optimization steps = 938
Epoch 训练损失 验证损失
1 0.875700 0.282633

与上面的 notebook_launcher 示例类似,也可以将这个过程封装成一个训练函数:

def train_trainer_ddp():
model = BasicNet() training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
) def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
) trainer.train() notebook_launcher(train_trainer_ddp, args=(), num_processes=2)

相关资源


原文作者:Zachary Mueller

译者:innovation64 (李洋)

审校:yaoqi (胡耀淇)

排版:zhongdongy (阿东)

从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练的更多相关文章

  1. Pytorch使用分布式训练,单机多卡

    pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数 ...

  2. 云原生的弹性 AI 训练系列之二:PyTorch 1.9.0 弹性分布式训练的设计与实现

    背景 机器学习工作负载与传统的工作负载相比,一个比较显著的特点是对 GPU 的需求旺盛.在之前的文章中介绍过(https://mp.weixin.qq.com/s/Nasm-cXLtJObjLwLQH ...

  3. Pytorch分布式训练

    用单机单卡训练模型的时代已经过去,单机多卡已经成为主流配置.如何最大化发挥多卡的作用呢?本文介绍Pytorch中的DistributedDataParallel方法. 1. DataParallel ...

  4. [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)

    Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...

  5. 【xxl-job】轻松实现分布式定时任务demo实例

    [项目描述]前段时间专门独立了一个spring boot服务,用于做和第三方erp系统的对接工作.此服务的第一个需求工作就是可以通过不同的规则,设置不同的定时任务,从而获取erp系统的商品数据.所以, ...

  6. Pytorch修改ResNet模型全连接层进行直接训练

    之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层 ...

  7. [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架

    [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0 ...

  8. Pytorch的模型加速方法:Dataparallel (DP) 和 DataparallelDistributedparallel (DDP)

    Dataparallel 和 DataparallelDistributed 的区别 一.Dataparallel(DP) 1.1 Dartaparallel 的使用方式 Dataparallel 的 ...

  9. PyTorch大更新!谷歌出手帮助开发,正式支持TensorBoard | 附5大开源项目

    大家又少了一个用TensorFlow的理由. 在一年一度的开发者大会F8上,Facebook放出PyTorch的1.1版本,直指TensorFlow"腹地". 不仅宣布支持Tens ...

  10. [源码解析] PyTorch 分布式(1)------历史和概述

    [源码解析] PyTorch 分布式(1)------历史和概述 目录 [源码解析] PyTorch 分布式(1)------历史和概述 0x00 摘要 0x01 PyTorch分布式的历史 1.1 ...

随机推荐

  1. 自学 TypeScript 第二天 编译选项

    前言: 昨天我们学习了 TS 的数据类型,不知道大家回去以后练习没练习,如果你练习了一定会发现一个问题,我们的 TS 好像和 JS 不太一样 JS 写完之后直接就可以放到页面上,就可以用了,而我们的 ...

  2. Web浏览器Linux Shell(shellinabox解决通用区服务器Linux Shell访问很麻烦的问题)

    问题背景 通用区服务器的Linux Shell访问,比较麻烦 需要动态密码(手机上装Token)连跳板机,再用跳板机上的终端工具连Linux Shell 改进方法 使用shellinabox,就能直接 ...

  3. ArcObjects SDK开发 003 宏观角度看ArcObjects SDK

    1.为什么要宏观上看ArcObjects SDK ArcObjects SDK库是一个非常庞大复杂COM组件集合,ArcGIS10.0有1000多个枚举.90多个结构体.5000多个接口以及4000多 ...

  4. Django框架三板斧本质-jsonResponse对象-form表单上传文件request对象方法-FBV与CBV区别

    目录 一:视图层 2.三板斧(HttpResponse对象) 4.HttpResponse() 5.render() 6.redirect() 7.也可以是一个完整的URL 二:三板斧本质 1.Dja ...

  5. MySQL视图-触发器

    目录 一:视图 1.什么是视图? 2.为什么要用视图? 3.如何使用视图 4.反复拼接的繁琐(引入视图的作用) 5.解决方法 二:视图的应用 1.创建视图的格式: 2.查询视图层 3.查询Navica ...

  6. redis集合 实现 队列

    先说一下需求:用队列解决 流量削峰,主要应用场景:商城秒杀功能. 以下是业务流程图可以参考一下: 然后本地实现思路 截图下单页面 每次购买数量会减少1,设置了1000个库存,用户id 是随机生成的. ...

  7. m3u8文件后缀jpg,png等处理方法及视频合并

    处理 # 解析伪装成png的ts def resolve_ts(src_path, dst_path): ''' 如果m3u8返回的ts文件地址为 https://p1.eckwai.com/ufil ...

  8. 后疫情办公时代——你需要的多人同步协同编辑Demo(可粘贴可撤销)

    新冠病毒的疫情使得在线办公成为了一个常态,这使得在线文档成为了时下的热点.其中在线协同表格是在线文档的重要一个组成部分,纯前端表格在在线协同表格上有着得天独厚的优势:本身已经实现了单人操作在线文档的基 ...

  9. 前后端开发必会的 HTTP 协议“十全大补丸”(万字长文)

    本文全面介绍了 HTTP 协议相关知识,包括 HTTP 请求报文.响应报文.持久连接.缓存.Cookie 以及 HTTP 版本升级等! HTTP 协议全称为 HyperText Transfer Pr ...

  10. 2022年7月14日,第四组 周鹏,认识JAVA的第二天(;´д`)ゞ(;д;)

    那天,我遇到了JAVA 然后,我失去了头发 无论我用了多少办法 还是放不下那个它 我哭的像个傻瓜 但也没能留住它 如果再有一次从来 我愿为它披上薄纱 愿它安稳有个家 可我终究还是失去了它 失去了原本为 ...