概述

本教程假定你已经对于 PyToch 训练一个简单模型有一定的基础理解。本教程将展示使用 3 种封装层级不同的方法调用 DDP (DistributedDataParallel) 进程,在多个 GPU 上训练同一个模型:

  • 使用 pytorch.distributed 模块的原生 PyTorch DDP 模块
  • 使用 Accelerate 对 pytorch.distributed 的轻量封装,确保程序可以在不修改代码或者少量修改代码的情况下在单个 GPU 或 TPU 下正常运行
  • 使用 Transformer 的高级 Trainer API ,该 API 抽象封装了所有代码模板并且支持不同设备和分布式场景。

什么是分布式训练,为什么它很重要?

下面是一些非常基础的 PyTorch 训练代码,它基于 Pytorch 官方在 MNIST 上创建和训练模型的示例

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms class BasicNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
self.act = F.relu def forward(self, x):
x = self.act(self.conv1(x))
x = self.act(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.act(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output

我们定义训练设备 (cuda):

device = "cuda"

构建一些基本的 PyTorch DataLoaders:

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64)

把模型放入 CUDA 设备:

model = BasicNet().to(device)

构建 PyTorch optimizer (优化器)

optimizer = optim.AdamW(model.parameters(), lr=1e-3)

最终创建一个简单的训练和评估循环,训练循环会使用全部训练数据集进行训练,评估循环会计算训练后模型在测试数据集上的准确度:

model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad() model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

通常从这里开始,就可以将所有的代码放入 Python 脚本或在 Jupyter Notebook 上运行它。

然而,只执行 python myscript.py 只会使用单个 GPU 运行脚本。如果有多个 GPU 资源可用,您将如何让这个脚本在两个 GPU 或多台机器上运行,通过分布式训练提高训练速度?这是 torch.distributed 发挥作用的地方。

PyTorch 分布式数据并行

顾名思义,torch.distributed 旨在配置分布式训练。你可以使用它配置多个节点进行训练,例如:多机器下的单个 GPU,或者单台机器下的多个 GPU,或者两者的任意组合。

为了将上述代码转换为分布式训练,必须首先定义一些设置配置,具体细节请参阅 DDP 使用教程

首先必须声明 setupcleanup 函数。这将创建一个进程组,并且所有计算进程都可以通过这个进程组通信。

注意:在本教程的这一部分中,假定这些代码是在 Python 脚本文件中启动。稍后将讨论使用 Accelerate 的启动器,就不必声明 setupcleanup 函数了

import os
import torch.distributed as dist def setup(rank, world_size):
"Sets up the process group and configuration for PyTorch Distributed Data Parallelism"
os.environ["MASTER_ADDR"] = 'localhost'
os.environ["MASTER_PORT"] = "12355" # Initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size) def cleanup():
"Cleans up the distributed environment"
dist.destroy_process_group()

最后一个疑问是,我怎样把我的数据和模型发送到另一个 GPU 上?

这正是 DistributedDataParallel 模块发挥作用的地方, 它将您的模型复制到每个 GPU 上 ,并且当 loss.backward() 被调用进行反向传播的时候,所有这些模型副本的梯度将被同步地平均/下降 (reduce)。这确保每个设备在执行优化器步骤后具有相同的权重。

下面是我们的训练设置示例,我们使用了 DistributedDataParallel 重构了训练函数:

注意:此处的 rank 是当前 GPU 与所有其他可用 GPU 相比的总体 rank,这意味着它们的 rank 为 0 -> n-1

from torch.nn.parallel import DistributedDataParallel as DDP

def train(model, rank, world_size):
setup(rank, world_size)
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank])
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3)
# Train for one epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
cleanup()

在上述的代码中需要为每个副本设备上的模型 (因此在这里是ddp_model的参数而不是 model 的参数) 声明优化器,以便正确计算每个副本设备上的梯度。

最后,要运行脚本,PyTorch 有一个方便的 torchrun 命令行模块可以提供帮助。只需传入它应该使用的节点数以及要运行的脚本即可:

torchrun --nproc_per_nodes=2 --nnodes=1 example_script.py

上面的代码可以在在一台机器上的两个 GPU 上运行训练脚本,这是使用 PyTorch 只进行分布式训练的情况 (不可以在单机单卡上运行)。

现在让我们谈谈 Accelerate,一个旨在使并行化更加无缝并有助于一些最佳实践的库。

Accelerate

Accelerate 是一个库,旨在无需大幅修改代码的情况下完成并行化。除此之外, Accelerate 附带的数据 pipeline 还可以提高代码的性能。

首先,让我们将刚刚执行的所有上述代码封装到一个函数中,以帮助我们直观地看到差异:

def train_ddp(rank, world_size):
setup(rank, world_size)
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model
model = model.to(rank)
ddp_model = DDP(model, device_ids=[rank]) # Build optimizer
optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3) # Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad() # Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

接下来让我们谈谈 Accelerate 如何便利地实现并行化的。上面的代码有几个问题:

  1. 该代码有点低效,因为每个设备都会创建一个 dataloader
  2. 这些代码只能运行在多 GPU 下,当想让这个代码运行在单个 GPU 或 TPU 时,还需要额外进行一些修改。

Accelerate 通过 Accelerator 类解决上述问题。通过它,不论是单节点还是多节点,除了三行代码外,其余代码几乎保持不变,如下所示:

def train_ddp_accelerate():
accelerator = Accelerator()
# Build DataLoaders
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3081))
]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64)
test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model
model = BasicModel() # Build optimizer
optimizer = optim.AdamW(model.parameters(), lr=1e-3) # Send everything through `accelerator.prepare`
train_loader, test_loader, model, optimizer = accelerator.prepare(
train_loader, test_loader, model, optimizer
) # Train for a single epoch
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
output = model(data)
loss = F.nll_loss(output, target)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad() # Evaluate
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
print(f'Accuracy: {100. * correct / len(test_loader.dataset)}')

借助 Accelerator 对象,您的 PyTorch 训练循环现在已配置为可以在任何分布式情况运行。使用 Accelerator 改造后的代码仍然可以通过 torchrun CLI 或通过 Accelerate 自己的 CLI 界面启动(启动你的 Accelerate 脚本)。

因此,现在可以尽可能保持 PyTorch 原生代码不变的前提下,使用 Accelerate 执行分布式训练。

早些时候有人提到 Accelerate 还可以使 DataLoaders 更高效。这是通过自定义采样器实现的,它可以在训练期间自动将部分批次发送到不同的设备,从而允许每个设备只需要储存数据的一部分,而不是一次将数据复制四份存入内存,具体取决于配置。因此,内存总量中只有原始数据集的一个完整副本。该数据集会拆分后分配到各个训练节点上,从而允许在单个实例上训练更大的数据集,而不会使内存爆炸

使用 notebook_launcher

之前提到您可以直接从 Jupyter Notebook 运行分布式代码。这来自 Accelerate 的 notebook_launcher 模块,它可以在 Jupyter Notebook 内部的代码启动多 GPU 训练。

使用它就像导入 launcher 一样简单:

from accelerate import notebook_launcher

接着传递我们之前声明的训练函数、要传递的任何参数以及要使用的进程数(例如 TPU 上的 8 个,或两个 GPU 上的 2 个)。下面两个训练函数都可以运行,但请注意,启动单次启动后,实例需要重新启动才能产生另一个:

notebook_launcher(train_ddp, args=(), num_processes=2)

或者:

notebook_launcher(train_accelerate_ddp, args=(), num_processes=2)

使用 Trainer

终于我们来到了最高级的 API——Hugging Face Trainer.

它涵盖了尽可能多的训练类型,同时仍然能够在分布式系统上进行训练,用户根本不需要做任何事情。

首先我们需要导入 Trainer:

from transformers import Trainer

然后我们定义一些 TrainingArguments 来控制所有常用的超参数。 Trainer 需要的训练数据是字典类型的,因此需要制作自定义整理功能。

最后,我们将训练器子类化并编写我们自己的 compute_loss.

之后,这段代码也可以分布式运行,而无需修改任何训练代码!

from transformers import Trainer, TrainingArguments

model = BasicNet()

training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
) def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
)
trainer.train()
***** Running training *****
Num examples = 60000
Num Epochs = 1
Instantaneous batch size per device = 64
Total train batch size (w. parallel, distributed & accumulation) = 64
Gradient Accumulation steps = 1
Total optimization steps = 938
Epoch 训练损失 验证损失
1 0.875700 0.282633

与上面的 notebook_launcher 示例类似,也可以将这个过程封装成一个训练函数:

def train_trainer_ddp():
model = BasicNet() training_args = TrainingArguments(
"basic-trainer",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
num_train_epochs=1,
evaluation_strategy="epoch",
remove_unused_columns=False
) def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples])
labels = torch.tensor([example[1] for example in examples])
return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(inputs["x"])
target = inputs["labels"]
loss = F.nll_loss(outputs, target)
return (loss, outputs) if return_outputs else loss trainer = MyTrainer(
model,
training_args,
train_dataset=train_dset,
eval_dataset=test_dset,
data_collator=collate_fn,
) trainer.train() notebook_launcher(train_trainer_ddp, args=(), num_processes=2)

相关资源


原文作者:Zachary Mueller

译者:innovation64 (李洋)

审校:yaoqi (胡耀淇)

排版:zhongdongy (阿东)

从 PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练的更多相关文章

  1. Pytorch使用分布式训练,单机多卡

    pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数 ...

  2. 云原生的弹性 AI 训练系列之二:PyTorch 1.9.0 弹性分布式训练的设计与实现

    背景 机器学习工作负载与传统的工作负载相比,一个比较显著的特点是对 GPU 的需求旺盛.在之前的文章中介绍过(https://mp.weixin.qq.com/s/Nasm-cXLtJObjLwLQH ...

  3. Pytorch分布式训练

    用单机单卡训练模型的时代已经过去,单机多卡已经成为主流配置.如何最大化发挥多卡的作用呢?本文介绍Pytorch中的DistributedDataParallel方法. 1. DataParallel ...

  4. [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)

    Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...

  5. 【xxl-job】轻松实现分布式定时任务demo实例

    [项目描述]前段时间专门独立了一个spring boot服务,用于做和第三方erp系统的对接工作.此服务的第一个需求工作就是可以通过不同的规则,设置不同的定时任务,从而获取erp系统的商品数据.所以, ...

  6. Pytorch修改ResNet模型全连接层进行直接训练

    之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层 ...

  7. [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架

    [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0 ...

  8. Pytorch的模型加速方法:Dataparallel (DP) 和 DataparallelDistributedparallel (DDP)

    Dataparallel 和 DataparallelDistributed 的区别 一.Dataparallel(DP) 1.1 Dartaparallel 的使用方式 Dataparallel 的 ...

  9. PyTorch大更新!谷歌出手帮助开发,正式支持TensorBoard | 附5大开源项目

    大家又少了一个用TensorFlow的理由. 在一年一度的开发者大会F8上,Facebook放出PyTorch的1.1版本,直指TensorFlow"腹地". 不仅宣布支持Tens ...

  10. [源码解析] PyTorch 分布式(1)------历史和概述

    [源码解析] PyTorch 分布式(1)------历史和概述 目录 [源码解析] PyTorch 分布式(1)------历史和概述 0x00 摘要 0x01 PyTorch分布式的历史 1.1 ...

随机推荐

  1. C++初阶(list容器+模拟实现)

    list介绍 list的本质是一个带头的双向循环链表. 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.链表由一系列结点(链表中每一个元素称为结点 ...

  2. Guess Next Session

    打开又是一个输入框的界面,点一下下面的看源码 很简短的一个源码 大概意思是如果password等于session[password]就输出flag 直接搜了下session函数的漏洞,发现sessio ...

  3. 【Serverless】Unity快速集成认证服务实现邮件登录

    ​概述: 认证服务可以为您的应用快速构建安全可靠的用户认证系统,您只需在应用中访问认证服务的相关能力,而不需要关心云侧的设施和实现. 本次将带来如何使用Unity编辑器快速集成认证服务SDK并实现邮箱 ...

  4. Java多线程详解(通俗易懂)

    一.线程简介 1. 什么是进程? 电脑中会有很多单独运行的程序,每个程序有一个独立的进程,而进程之间是相互独立存在的.例如图中的微信.酷狗音乐.电脑管家等等. 2. 什么是线程? 进程想要执行任务就需 ...

  5. RSA_zd网校登录

    网站 aHR0cHM6Ly91c2VyLndhbmd4aWFvLmNuL2xvZ2lu 点到密码登录,会返回验证码 输入错误的账号密码点登录抓包,可以看到密码是被加密的  initator点进去  简 ...

  6. day07-功能实现06

    家居网购项目实现06 以下皆为部分代码,详见 https://github.com/liyuelian/furniture_mall.git 14.功能13-首页分页 14.1需求分析/图解 顾客进入 ...

  7. 安装node.js与webpack创建vue2项目

    本文为博主原创,转载请注明出处: 1.安装node.js 下载地址:http://nodejs.cn/download/ (可查看历史版本) node.js 中文网:http://nodejs.cn/ ...

  8. C++11(列表初始化+变量类型推导+类型转换+左右值概念、引用+完美转发和万能应用+定位new+可变参数模板+emplace接口)

    列表初始化 用法 在C++98中,{}只能够对数组元素进行统一的列表初始化,但是对应自定义类型,无法使用{}进行初始化,如下所示: // 数组类型 int arr1[] = { 1,2,3,4 }; ...

  9. [OpenCV实战]20 使用OpenCV实现基于增强相关系数最大化的图像对齐

    目录 1 背景 1.1 彩色摄影的一个简短而不完整的历史 1.2 OpenCV中的运动模型 2 使用增强相关系数最大化(ECC)的图像对齐 2.1 findTransformECC在OpenCV中的示 ...

  10. [OpenCV实战]48 基于OpenCV实现图像质量评价

    本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价.图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏. 本文 ...