在之前的 博文 中,我们探讨了图机器学习的一些理论知识。这一篇我们将探索如何使用 Transformers 库进行图分类。(你也可以从 此处 下载演示 notebook,跟着一起做!)

目前,Transformers 中唯一可用的图 transformer 模型是微软的 Graphormer,因此本文的例子将会基于该模型。我们期待看到大家会使用并集成哪些其他模型进 。

软件

要学习本教程,需要安装 datasetstransformers (版本号 >= 4.27.2),你可以使用 pip install -U datasets transformers 来安装。

数据

你可以使用自己的图数据集,也可以使用 Hub 上已有的数据集。本文我们主要使用已有的数据集,你也可以随时 添加你的数据集 到 Hugging Face!

数据加载

从 Hub 加载图数据集非常简单。这里,我们加载 OGB 库中的 ogbg-mohiv 数据集 (该数据集是斯坦福 开放图基准 (Open Graph Benchmark,OGB) 的一部分):

from datasets import load_dataset

# There is only one split on the hub
dataset = load_dataset("OGB/ogbg-molhiv") dataset = dataset.shuffle(seed=0)

这个数据集含三个拆分,trainvalidationtest,所有这些拆分每一行都表示一个图,每个图包含 5 个数据列 (edge_indexedge_attrynum_nodesnode_feat),你可以通过执行 print(dataset) 来查看。

如果你还安装了其他图处理库,你还可以用这些库把图可视化出来,并进一步检查数据集。例如,使用 PyGeometric 和 matplotlib:

import networkx as nx
import matplotlib.pyplot as plt # We want to plot the first train graph
graph = dataset["train"][0] edges = graph["edge_index"]
num_edges = len(edges[0])
num_nodes = graph["num_nodes"] # Conversion to networkx format
G = nx.Graph()
G.add_nodes_from(range(num_nodes))
G.add_edges_from([(edges[0][i], edges[1][i]) for i in range(num_edges)]) # Plot
nx.draw(G)

格式

在 Hub 上,图数据集主要存储为图列表形式 (使用 jsonl 格式)。

单个图表示为一个字典,以下是我们图分类数据集的理想格式:

  • edge_index 包含图上每条边对应的节点 ID,存储为包含两个节点列表的列表 (即由一个源节点列表和一个目的节点列表组成的列表)。

    • 类型: 2 个整数列表的列表。
    • 示例: 包含四个节点 (0、1、2 和 3) 且连接为 1->2、1->3 和 3->1 的图将具有 edge_index = [[1, 1, 3]、[2、3、1]]。你可能会注意到此处不存在节点 0,因为在本数据中它与其他节点无边连接。这就是下一个属性很重要的原因。
  • num_nodes 表示图中可用节点的数目 (默认情况下,假定节点按顺序编号)。

    • 类型: 整数
    • 示例: 在上例中,num_nodes = 4
  • y 每个图的预测标签 (可以是类、属性值或是不同任务的多个二分类标签)。

    • Type: 整数列表 (用于多分类) 、浮点数 (用于回归) 或 0/1 列表 (用于二元多任务分类)
    • 示例: 我们可以预测图规模 (小 = 0,中 = 1,大 = 2)。本例中,y = [0]
  • node_feat 包含图中每个节点的可用特征 (如果存在),按节点 ID 排序。

    • 类型: 整数列表的列表 (可选)
    • 例子: 如上例中的节点可以有一些类型特征 (就像分子图中的节点是不同的原子,不同的原子有不同的类型一样)。打比方,本例中 node_feat = [[1], [0], [1], [1]]
  • edge_attr 包含图中每条边的可用属性 (如果存在),按 edge_index 排序。

    • 类型: 整数列表的列表 (可选)
    • 例子: 仍使用上例,边也可以有类型 (如分子中的键),如 edge_attr = [[0], [1], [1]]`。

预处理

图 transformer 框架通常需要根据数据集进行特定的预处理,以生成有助于目标学习任务 (在我们的案例中为分类) 的特征和属性。

在这里,我们使用 Graphormer 的默认预处理,它生成进度/出度信息、节点间的最短路径以及模型感兴趣的其他属性。

from transformers.models.graphormer.collating_graphormer import preprocess_item, GraphormerDataCollator

dataset_processed = dataset.map(preprocess_item, batched=False)

我们也可以在 DataCollator 的参数中动态进行预处理 (通过将 on_the_fly_processing 设置为 True)。但并非所有数据集都像 ogbg-molhiv 那样小,对于大图,动态预处理成本太高,因此需要预先进行预处理,并存储预处理后的数据供后续训练实验使用。

模型

模型加载

这里,我们加载一个已有的预训练模型及其 checkpoint 并在我们的下游任务上对其进行微调,该任务是一个二分类任务 (因此 num_classes = 2)。我们还可以在回归任务 (num_classes = 1) 或多任务分类上微调我们的模型。

from transformers import GraphormerForGraphClassification

model = GraphormerForGraphClassification.from_pretrained(
"clefourrier/pcqm4mv2_graphormer_base",
num_classes=2, # num_classes for the downstream task
ignore_mismatched_sizes=True,
)

我们来看下细节。

在代码中调用 from_pretrained 方法来下载并缓存模型权重。由于类的数量 (用于预测) 取决于数据集,我们将新的 num_classesignore_mismatched_sizesmodel_checkpoint 一起传给该函数。这会触发函数创建一个自定义的、特定于该下游任务的分类头,这个头与原模型中的解码器头很可能是不同的。

我们也可以创建一个新的随机初始化的模型来从头开始训练,此时,我们既可以复用给定检查点的超参配置,也可以自己手动选择超参配置。

训练或微调

为了简化模型训练,我们使用 Trainer。我们需要定义训练相关的配置以及评估指标来实例化 Trainer。我们主要使用 TrainingArguments类,这是一个包含所有配置项的类,用于定制训练配置。我们要给它一个文件夹名称,用于保存模型的 checkpoint。

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
"graph-classification",
logging_dir="graph-classification",
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=True, # batch size can be changed automatically to prevent OOMs
gradient_accumulation_steps=10,
dataloader_num_workers=4, #1,
num_train_epochs=20,
evaluation_strategy="epoch",
logging_strategy="epoch",
push_to_hub=False,
)

对于图数据集,调整 batch size 和梯度累积步数来保证有效 batch size 够大同时又要避免内存不足,这件事尤为重要。

最后一个参数 push_to_hub 允许 Trainer 在训练期间定期将模型推送到 Hub,这个通常由保存步长来决定。

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset_processed["train"],
eval_dataset=dataset_processed["validation"],
data_collator=GraphormerDataCollator(),
)

在用于图分类的 Trainer 中,对给定的图数据集使用正确的数据整理器 (data collator) 很重要,这个数据整理器会将图转换为用于训练的 batch 数据。

train_results = trainer.train()
trainer.push_to_hub()

训练完后,可以使用 push_to_hub 将模型与所有其他训练相关信息一起保存到 hub。

由于此模型比较大,因此在 CPU (Intel Core i7) 上训练/微调 20 个 epoch 大约需要一天时间。想要更快点的话,你可以使用强大的 GPU 和并行化方法,你只需在 Colab notebook 中或直接在你选择的其他集群上启动代码即可。

结束语

现在你已经知道如何使用 transformers 来训练图分类模型,我们希望你尝试在 Hub 上分享你最喜欢的图 transformer 模型的 checkpoints、模型以及数据集,以供社区的其他人使用!


英文原文: https://hf.co/blog/graphml-classification

作者: Clém

译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。

排版/审校: zhongdongy (阿东)

使用 Transformers 进行图分类的更多相关文章

  1. [转]解析UML建模语言中的UML图分类、 UML各种图形及作用

    本文向大家介绍一下UML图分类,作为一种建模语言,UML的定义包括UML语义和UML表示法两个部分. UML图大致可分为五类,共有九种图形. AD: 本文和大家重点讨论一下UML图分类,标准建模语言U ...

  2. scrapy框架爬取糗妹妹网站妹子图分类的所有图片

    爬取所有图片,一个页面的图片建一个文件夹.难点,图片中有不少.gif图片,需要重写下载规则, 创建scrapy项目 scrapy startproject qiumeimei 创建爬虫应用 cd qi ...

  3. 1.1UML图分类

    用例图 表现方式 是谁用软件 软件的功能 类图 描述类内部关系和类之间关系, 关系的强弱顺序泛化=实现>组合>聚合>关联>依赖 泛化:继承关系,指定了子类如何继承父类所有特征和 ...

  4. java常见异常类图(分类了Error/RuntimeExecption、check Exception)

    版权:欧初权 http://www.cnblogs.com/langtianya/p/4435537.html

  5. PGL图学习之项目实践(UniMP算法实现论文节点分类、新冠疫苗项目实战,助力疫情)[系列九]

    原项目链接:https://aistudio.baidu.com/aistudio/projectdetail/5100049?contributionType=1 1.图学习技术与应用 图是一个复杂 ...

  6. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

  7. C#结构类型图

    C#结构类型图     分类: C#

  8. 图卷积神经网络(GCN)入门

    图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展.不得不专门为GCN开一个新篇章,表示其重要程度.本文结合大量参考文献,从理论到实 ...

  9. 【GNN】图神经网络小结

    图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶Cheb ...

  10. UML类图及类之间关系

    1.UML基本介绍 UML:统一建模语言,是一种用于软件系统分析和设计的语言工具 2.UML图 UML图分类: 用例图 静态结构图:类图,对象图,包图,组件图,部署图 动态行为图:交互图,状态图,活动 ...

随机推荐

  1. 4vue 属性绑定

    属性绑定v-bind <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  2. TRACE()宏的使用

    TRACE()宏一般是用在mfc中的,用于将调试信息输出到vs的输出窗口中(这是关键), 这在使用vs作为开发工具的时候,是非常方便的. 然而在开发一般c++程序时,却貌似无法获得这样的便利,其实只要 ...

  3. JSP环境搭建及入门 和 虚拟路径和虚拟主机

    Jsp:是一个动态网页,而不是静态网页 html,css,js,Jquery:是静态网页 动态网页是随着,时间,地点,用户操作,而改变 静态不需要jsp 动态是需要的 BS 可以通过浏览器直接访问浏览 ...

  4. 基于R的Bilibili视频数据建模及分析——预处理篇

    基于R的Bilibili视频数据建模及分析--预处理篇 文章目录 基于R的Bilibili视频数据建模及分析--预处理篇 0.写在前面 1.项目介绍 1.1 项目背景 1.2 数据来源 1.3 数据集 ...

  5. 数据库结构差异比较-SqlServer

    /****** Object: StoredProcedure [dbo].[p_comparestructure_2005] Script Date: 2022/10/8 10:00:20 **** ...

  6. Spring--AOP通知类型

    AOP通知类型 前置通知 通知类中的数据在原始数据的前面 后置通知 通知类中的数据在原始数据的后面 环绕通知 若是只是加一个注解: 我们需要这样做:加一个参数: 若是面对有返回值的方法,又有一点不同之 ...

  7. 第二章 数据和C

    2.1错误和警告 如果输入这个程序的过程中出现错误(error),比如少了一个分号,编译器会给出语法错误消息.即使输入正确,编译器还可能发出这样的警告(warning):"警告------从 ...

  8. 手把手 Golang 实现静态图像与视频流人脸识别

    说起人脸识别,大家首先想到的实现方式应该是 Python 去做相关的处理,因为相关的机器学习框架,库都已经封装得比较好了.但是我们今天讨论的实现方式换成 Golang,利用 Golang 去做静态图像 ...

  9. while与do-while的区别是什么,怎么用?

    前言 在上一篇文章中,壹哥给大家讲解了循环的概念,并重点给大家讲解了for循环的使用.但在Java中,除了for循环之外,还有while.do-while.foreach等循环形式.今天壹哥就再用一篇 ...

  10. SpringBoot——配置及原理

    更多内容,前往IT-BLOG 一.Spring Boot全局配置文件 application.properties 与 application.yml 配置文件的作用:可以覆盖 SpringBoot ...