目标检测算法之Fast R-CNN算法详解
在介绍Fast R-CNN之前我们先介绍一下SPP Net
一、SPP Net
SPP:Spatial Pyramid Pooling(空间金字塔池化)
众所周知,CNN一般都含有卷积部分和全连接部分,其中,卷积层不需要固定尺寸的图像,而全连接层是需要固定大小的输入。
所以当全连接层面对各种尺寸的输入数据时,就需要对输入数据进行crop(crop就是从一个大图扣出网络输入大小的patch,比如227×227),或warp(把一个边界框bounding box的内容resize成227×227)等一系列操作以统一图片的尺寸大小,比如224*224(ImageNet)、32*32(LenNet)、96*96等。
所以,在R-CNN中,才会将每个Region Proposal缩放成(wrap)成统一的227x227并输入到CNN。
但warp/crop这种预处理,导致问题要么被拉伸变形,要么物体不全,限制了识别精确度。换句话说,一张16:9的图片硬是被resize成1:1,你说图片失真不?
二、SPP Net的特点
1. SPP不在限制输入图像的尺度,在最后一个卷积层,接入了金字塔池化,保证传到下一层全连接层的输入固定。
简言之,CNN原本只能固定输入,固定输出,CNN加上SPP之后,便能任意输入、固定输出。
ROI池化层一般跟在卷积层后面,此时网络的输入可以是任意尺度的,在SPP layer中每一个pooling的filter会根据输入调整大小,而SPP的输出是固定维数的向量,然后给到全连接FC层。
2. 只对原图提取一次卷积特征,得到整张图的卷积特征feature map,然后找到每个候选框在feature map上的映射patch,将次patch作为每个候选框的卷积特征输入到SPP layer和之后的层,完成特征提取工作。节省了大量的时间,比R-CNN有100倍左右的提速
三、Fast R-CNN
Fast R-CNN就是在R-CNN的基础上采纳了SPP Net的方法,使得性能进一步提高。
与R-CNN相比,Fast R-CNN主要有两点不同:一是最后一个卷积层加入了ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归Bounding Box Regression直接加入到CNN网络中训练
(1)ROI pooling layer实际上是SPP Net的一个精简版,SPP Net对每个proposal使用了不同大小的金字塔映射,而ROI pooling layer只需要采样到一个7x7的特征图。对于VGG16网络conv5_3有512个特征图,这样所有region proposal对应了一个7*7*512维度的特征向量作为全连接层的输入。也就是说,它可以把不同大小的输入映射到一个固定尺度的特征向量。
(2)R-CNN训练过程分为了三个阶段,而Fast R-CNN直接使用了softmax替代SVM分类,同时利用多任务损失函数边框回归也加入到网络中,整个训练过程就是端到端的(region proposal提取除外)
也就是说,R-CNN的处理流程是先提proposal,然后CNN提取特征,之后用SVM分类器,最后再做box regression。而在Fast R-CNN中,把box regression与region分类合并成multi-task模型,实际实验也证明,这两个任务能够共享卷积特征,并相互促进。
原来的方法:许多候选框(比如2k个)-->CNN-->得到每个候选框的特征-->分类 + 回归
现在的方法:一张完整的图片-->CNN-->得到每个候选框的特征-->分类 + 回归
容易看出,提速的原因在于,不像R-CNN把每个候选区域给深度网络提特征,而是整张图提一次特征,再把候选框映射到conv5上,而SPP只需要计算一次特征,剩下的只需要在conv5层上操作就可以了。
性能上的提升也是明显的:
参考地址:
https://cloud.tencent.com/developer/news/281788
目标检测算法之Fast R-CNN算法详解的更多相关文章
- [转]CNN目标检测(一):Faster RCNN详解
https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...
- 【目标检测】SSD+Tensorflow 300&512 配置详解
SSD_300_vgg和SSD_512_vgg weights下载链接[需要科学上网~]: Model Training data Testing data mAP FPS SSD-300 VGG-b ...
- Python聚类算法之基本K均值实例详解
Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...
- [转]EM算法(Expectation Maximization Algorithm)详解
https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...
- 搜索引擎算法研究专题五:TF-IDF详解
搜索引擎算法研究专题五:TF-IDF详解 2017年12月19日 ⁄ 搜索技术 ⁄ 共 1396字 ⁄ 字号 小 中 大 ⁄ 评论关闭 TF-IDF(term frequency–inverse ...
- 目标检测算法(一):R-CNN详解
参考博文:https://blog.csdn.net/hjimce/article/details/50187029 R-CNN(Regions with CNN features)--2014年提出 ...
- R-CNN目标检测的selective search(SS算法)
候选框确定算法 对于候选框的位置确定问题,简单粗暴的方法就是穷举或者说滑动窗口法,但是这必然是不科学的,因为时间和计算成本太高,直观的优化就是假设同一种物体其在图像邻域内有比较近似的特征(例如颜色.纹 ...
- 【目标检测】用Fast R-CNN训练自己的数据集超详细全过程
目录: 一.环境准备 二.训练步骤 三.测试过程 四.计算mAP 寒假在家下载了Fast R-CNN的源码进行学习,于是使用自己的数据集对这个算法进行实验,下面介绍训练的全过程. 一.环境准备 我这里 ...
- DPLL 算法(求解k-SAT问题)详解(C++实现)
\(\text{By}\ \mathsf{Chesium}\) DPLL 算法,全称为 Davis-Putnam-Logemann-Loveland(戴维斯-普特南-洛吉曼-洛夫兰德)算法,是一种完备 ...
- 二分算法题目训练(四)——Robin Hood详解
codeforces672D——Robin Hood详解 Robin Hood 问题描述(google翻译) 我们都知道罗宾汉令人印象深刻的故事.罗宾汉利用他的射箭技巧和他的智慧从富人那里偷钱,然后把 ...
随机推荐
- Java strictfp有什么作用
- PyQt4 / PyQt5
Python事多,做个笔记,区分. PyQt5 Reference Guide http://pyqt.sourceforge.net/Docs/PyQt5/index.html Qt4 signal ...
- C++ 11 snippets , 1
1->创建7个Thread,跑个非常大的循环.观察CPU void func(string &name) { ;i<0xFFFFFFFF;i++) { //cout << ...
- linux CPU动态调频【转】
转自:https://www.xuebuyuan.com/2185926.html 针对sep4020的linux低功耗研究也有一段时间了,基本把低功耗的实现方式想清楚了(主要分成机制和策略),这段时 ...
- 巧用这19条MySQL优化【转】
1.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单的示例,标注(1.2.3.4.5)我们要重点关注的数据: type列,连接类型.一个好的SQL语句至少要 ...
- 前端清除缓存方法(微信缓存引起的bug)
bug1:在新版微信中,部门安卓机子(华为)出现window.location.href/window.location.reload....等方法来刷新本页面链接,发现页面没有被刷新,经过排查,发现 ...
- for..of和for..in和map、filter等循环区别
1.for in遍历的是数组的索引(即键名),而for of遍历的是数组元素值. for in遍历比较适合遍历对象,不太适合数组,有可能遍历出来的不按照顺序 遍历数组 ,,,,,] for (var ...
- Git学习笔记02-创建版本库
版本库就是一个目录,这个目录里面的所有文件都会被Git管理,每个文件的修改,删除都能追踪.以便在某个时刻追踪历史记录,或者还原 路径切换,查看文件命令和linux差不多,cd 文件路径 ls查看路径 ...
- LSH(Locality Sensitive Hashing)原理与实现
原文地址:https://blog.csdn.net/guoziqing506/article/details/53019049 LSH(Locality Sensitive Hashing)翻译成中 ...
- bootstrap4简单使用和入门02-bootstrap的js组件简单使用
自带默认的css和js弹框控制 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...