Serval and Bonus Problem

1.转化为l=1,最后乘上l

2.对于一个方案,就是随便选择一个点,选在合法区间内的概率

3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/(2*n+1)

4.运用条件概率或者直接解释,只需求出所有本质不同的方案的合法区间个数的和

5.DP即可。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=;
const int mod=;
int n,k,l;
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
int ad(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
int f[N][N][];
int main(){
rd(n);rd(k);rd(l);
f[][][]=;
for(reg i=;i<=*n+;++i){
for(reg j=;j<=i;++j){
for(reg x=;x<=;++x){
if(i+j+(-x)<=*n+){
// cout<<i<<" "<<j<<" "<<x<<endl;
f[i][j][x]=ad(f[i][j][x],(ll)f[i-][j+][x]*(j+)%mod);
if(j>)f[i][j][x]=ad(f[i][j][x],f[i-][j-][x]);
if(x==&&j>=k)f[i][j][x]=ad(f[i][j][x],f[i-][j][]);
// cout<<" val "<<f[i][j][x]<<endl;
}
}
}
}
// cout<<f[2*n+1][0][1]<<endl;
ll jie=;
for(reg i=n+;i<=*n+;++i) jie=(ll)jie*i%mod;
ll ans=(ll)f[*n+][][]*qm(,n)%mod*qm(jie,mod-)%mod;
cout<<(ll)ans*l%mod;
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/4/13 19:58:12
*/

CF1153F Serval and Bonus Problem的更多相关文章

  1. CF1153F Serval and Bonus Problem FFT

    CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...

  2. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  3. Codeforces1153F Serval and Bonus Problem 【组合数】

    题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ...

  4. CF1153 F. Serval and Bonus Problem(dp)

    题意 一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望. 数据范围 \(1 \le k \le n \le 2000, ...

  5. Codeforces 1153F Serval and Bonus Problem [积分,期望]

    Codeforces 思路 去他的DP,暴力积分多好-- 首先发现\(l\)没有用,所以不管它. 然后考虑期望的线性性,可以知道答案就是 \[ \int_0^1 \left[ \sum_{i=k}^n ...

  6. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  7. @codeforces - 1153F@ Serval and Bonus Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ...

  8. Codeforces Round #551 (Div. 2) EF Solution

    E. Serval and Snake 对于一个矩形,如果蛇的一条边与它相交,就意味着这条蛇从矩形内穿到矩形外,或者从矩形外穿到矩形内.所以如果某个矩形的答案为偶数,意味着蛇的头尾在矩形的同一侧(内或 ...

  9. 【Codeforces】Codeforces Round #551 (Div. 2)

    Codeforces Round #551 (Div. 2) 算是放弃颓废决定好好打比赛好好刷题的开始吧 A. Serval and Bus 处理每个巴士最早到站且大于t的时间 #include &l ...

随机推荐

  1. MT4下载历史数据

    这个网站只能下载2001年-当前时间前一个月的数据,还是挺全的.但是下载下来之后好像是一分钟图的,妈蛋其实我想要1小时图的EURUSD历史数据. 网站地址:http://www.fxfupan.com ...

  2. mac下virtualbox中centos6.5虚拟机实现全屏和调整分辨率

    在visualbox里安装好centos后,发现不能分辨率与原屏幕不一致,很多解决方法是:安装增强包.可是安装增强包后依然达不到效果. 究其原因,原来因为没有安装显卡驱动导致安装了增强包后无法实现分辨 ...

  3. 解决方法:CentOS7用yum安装软件显示错误:cannot find a valid baseurl for repo: base/7/x86_64

    在Linux学习中,发现使用yum安装软件出现以下的错误: 百度了各种方法,很多人也发现光是修改REBOOT=yes也没用,多次进行挂载.修改网卡配置文件.重置IP地址.重启网络.创建又删除配置文件的 ...

  4. Linux基础学习笔记2-文件管理和重定向

    本节内容 1)文件系统结构元素 2)创建和查看文件 3)复制.转移和删除文件 4)软和硬链接 5)三种I/O设备 6)把I/O重定向至文件 7)使用管道 文件系统和结构 文件系统 文件和目录被组织成一 ...

  5. Java Json 数据下划线与驼峰格式进行相互转换

    概述 今天遇见一个需求,需要对json数据进行下划线与驼峰格式之间进行转换,在Fastjson.Jackson.Gson都提供了转换的方式,在这里进行一下列举. User类: public class ...

  6. windows php7 安装redis扩展

    1,首先查看phpinfo 这会决定扩展文件版本(特别注意以php版本的architecture是x86还是64为准,不能以操作系统为准): 2.根据PHP版本号,编译器版本号和CPU架构  一定要根 ...

  7. js模拟ctrl+c的问题

    1.这种方式只可以对显示的textbox和textarea使用,对于display:none和visibility hidden 以及其他标签无效 var message = document.get ...

  8. 自定义 ASP.NET Identity Data Model with EF

    One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...

  9. tomcat9 点击bin目录下的startup.bat一闪而过

    我装的是tomcat9免安装版,jdk版本是11,之后去tomcat bin目录下点击startup.bat闪退(好吧,只有想办法解决了) 博客中的解决办法五花八门,什么环境变量没配好....不过都不 ...

  10. int,String转换

    int -> String 第一种方法:s=i+""; //会产生两个String对象 第二种方法:s=String.valueOf(i); //直接使用String类的静态 ...