交换的话,只有它们中间的书会对答案产生影响

树状数组记位置,套线段树记书的编号 它对应的页数和书的个数

然后就是减掉中间那些原来是逆序对的,再把交换以后是逆序对的加上

别忘了考虑这两个自己交换以后是不是逆序的

最重要的一步:开个O2

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> pa;
const int maxn=5e4+,lg2n=2e7+,P=1e9+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} namespace SegT{
int ch[lg2n][],pct;
ll sum[lg2n],cnt[lg2n]; inline void update(int x){sum[x]=sum[ch[x][]]+sum[ch[x][]],cnt[x]=cnt[ch[x][]]+cnt[ch[x][]];} inline void add(int &p,int l,int r,int x,int v){
if(!p) p=++pct;
if(l==r) sum[p]+=v,cnt[p]+=(v>?:-);
else{
int m=l+r>>;
if(x<=m) add(ch[p][],l,m,x,v);
else add(ch[p][],m+,r,x,v);
update(p);
}
} inline pa query(int p,int l,int r,int x,int y){
if(!p) return make_pair(,);
if(x<=l&&r<=y) return make_pair(sum[p],cnt[p]);
else{
int m=l+r>>;pa r1=make_pair(,),r2=make_pair(,);
if(x<=m) r1=query(ch[p][],l,m,x,y);
if(y>=m+) r2=query(ch[p][],m+,r,x,y);
return make_pair(r1.first+r2.first,r1.second+r2.second);
}
}
} int N,M,rt[maxn];
int pg[maxn],a[maxn]; inline int lowbit(int x){return x&(-x);} inline void add(int x,int y,int v){
for(;x<=N;x+=lowbit(x)) SegT::add(rt[x],,N,y,v);
}
inline pa query(int xl,int xr,int yl,int yr){
pa re=make_pair(,);
for(;xr;xr-=lowbit(xr)){
pa x=SegT::query(rt[xr],,N,yl,yr);
re.first+=x.first,re.second+=x.second;
}
for(xl--;xl;xl-=lowbit(xl)){
pa x=SegT::query(rt[xl],,N,yl,yr);
re.first-=x.first,re.second-=x.second;
}
return re;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd();
for(i=;i<=N;i++) a[i]=rd(),pg[i]=rd();
ll ans=;
for(i=;i<=N;i++){
pa re=query(,i-,a[i]+,N);
ans+=re.first+re.second*pg[i],ans%=P;
add(i,a[i],pg[i]);
}
// printf("%d\n",ans);
for(i=;i<=M;i++){
int x=rd(),y=rd();
if(x>y) swap(x,y);
pa re=query(x+,y-,,a[x]-);
ans-=re.first+re.second*pg[x],ans%=P; re=query(x+,y-,a[y]+,N);
ans-=re.first+re.second*pg[y],ans%=P;
if(a[x]>a[y]) ans-=pg[x]+pg[y],ans%=P; re=query(x+,y-,,a[y]-);
ans+=re.first+re.second*pg[y],ans%=P; re=query(x+,y-,a[x]+,N);
ans+=re.first+re.second*pg[x],ans%=P;
if(a[x]<a[y]) ans+=pg[x]+pg[y]; add(x,a[x],-pg[x]);add(x,a[y],pg[y]);
add(y,a[y],-pg[y]);add(y,a[x],pg[x]);
swap(a[x],a[y]);swap(pg[x],pg[y]);
printf("%lld\n",(ans+P)%P); }
return ;
}

luogu3759 不勤劳的图书管理员 (树状数组套线段树)的更多相关文章

  1. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  2. [BZOJ 3196] 213平衡树 【线段树套set + 树状数组套线段树】

    题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过 ...

  3. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  4. BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)

    题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...

  5. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  6. BZOJ 1901 Zju2112 Dynamic Rankings 树状数组套线段树

    题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了 ...

  7. bzoj3196 二逼平衡树 树状数组套线段树

    题目传送门 思路:树状数组套线段树模板题. 什么是树状数组套线段树,普通的树状数组每个点都是一个权值,而这里的树状数组每个点都是一颗权值线段树,我们用前缀差分的方法求得每个区间的各种信息, 其实关键就 ...

  8. 【序列操作IV】树状数组套线段树/树套树

    题目描述 给出序列 a1,a2,…,an(0≤ai≤109),有关序列的两种操作. 1. ai(1≤i≤n)变成 x(0≤x≤109). 2. 求 al,al+1,…,ar(1≤l≤r≤n)第 k(1 ...

  9. 2019南昌网络赛  I. Yukino With Subinterval 树状数组套线段树

    I. Yukino With Subinterval 题目链接: Problem Descripe Yukino has an array \(a_1, a_2 \cdots a_n\). As a ...

  10. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

随机推荐

  1. Oracle SQL优化原则

    原文:http://bbs.landingbj.com/t-0-240353-1.html 1.选用适合的 ORACLE 优化器 2.访问 Table 的方式 3.共享SQL语句 共享的语句必须满足三 ...

  2. mysql5.7以上安装

    下载:https://dev.mysql.com/downloads/mysql/ 1.在解压的mysql下(bin目录统计),创建my.ini 文件,内容日下(路径根据自己的目录修改) [mysql ...

  3. LLVM的安装

    1. 官网下载 llvm 2. 官网下载cmake 3. configure 执行 llvm 发现报错 4. 解压缩 cmake 5.将cmake 下面的bin 目录放到环境变量里面去 6. 创建一个 ...

  4. CPU Cache 机制以及 Cache miss

    CPU体系结构之cache小结 1.What is cache? Cache是用来对内存数据的缓存. CPU要访问的数据在Cache中有缓存,称为“命中” (Hit),反之则称为“缺失” (Miss) ...

  5. Oracle 条件判断函数decode和case when then案例

    --decode条件判断函数 ,,,,,) from dual --需求:不通过连表查询,显示业主类型名称列的值 ,,,'商业','其他') from t_owners --case when the ...

  6. Day 5-7 exec 和元类的创建.

    exec方法 元类 exec(str_command,globals,locals)参数1:字符串形式的命令参数2:全局作用域(字典形式). 如果不指定,默认globals参数3:局部作用(字典形式) ...

  7. ES6/ES2015的一些特性的简单使

    1.一些常用的ES6的特性: let, const, class, extends, super, arrow functions, template string, destructuring, d ...

  8. linux php7 安装redis扩展

    1,下载redis扩展地址:https://pecl.php.net/package/redis 选择你需要的版本 上传redis-3.1.3.tar.gz到/usr/local/src目录 cd / ...

  9. zabbix自定义模板——监控TCP连接状态

    TCP十二种连接状态说明 可以使用man netstat查看 LISTEN - 侦听来自远方TCP端口的连接请求: SYN-SENT -在发送连接请求后等待匹配的连接请求: SYN-RECEIVED ...

  10. 扩展运算符(spread)是三个点(…)

    扩展运算符(spread)是三个点(…),将一个数组||类数组||字符串转为用逗号分隔的序列. js中用来对数组进行操作,把数组里面的东西统统拿出来 一.展开数组 //展开数组 let a = [1, ...