概括

这篇论文,不像以往的那些论文,构造优化问题,然后再求解这个问题(一般都是凸化)。而是,直接选择某些特征,自然,不是瞎选的,论文给了一些理论支撑。但是,说实话,对于这个算法,我不敢苟同,我觉得好麻烦的。

Sparse PCA Formulation

非常普遍的问题

Optimality Conditions

这一小节,论文给出了,上述问题在取得最优的情况下应该符合条件。

条件1

如果\(x^{*} \quad \mathbf{Card}(x^{*})=k\)是上述问题的最优解,那么\(z^{*}\)(由\(x^{*}\)非零元组成)是子举证\(A_k^{*}\)(\(x^{*}\)非零元所在位置,\(A\)的\(k\)行\(k\)列)的主特征向量。

这个条件是显然的。

条件2

感觉和上面也没差啊。

Eigenvalue Bounds

这个定理,可以由一个事实导出:

\(A \in \mathbb{R}^{n\times n}\)为一对称矩阵,\(\lambda_i\)为其特征值,且降序排列。

\(A_{n-1}\)为\(A\)的任意\(n-1\)级主子式,\(\delta_i \quad i=1,2,\ldots,n-1\)为其特征值,那么有下面分隔:

\(\lambda_1 \leq \delta_1 \leq \lambda_2 \leq \ldots \leq \delta_{n-1} \leq \lambda_n\)

根据这个事实,再用归纳法就可以推出上面式子。

分隔定理的证明(《代数特征值问题》p98)



存在正交变换\(Q\),使得\(Q^{\mathrm{T}}BQ\)右下角变为对角阵。若正交矩阵\(S\)使得\(S^{\mathrm{T}}B_{n-1}S\)为对角阵,那么,



且右下角矩阵的特征值并没有变化。

令:



设\(a\)只有\(s\)个成分不为0,若\(a_j=0\),那么\(\alpha_j\)就是\(X\)的特征值。

经过一个适当的置换矩阵\(P\)变换,我们可以得到:

(注意,下面的\(b\)和上面的\(b\)不是一个\(b\),只是为了与书上的符号相一致)



那么只需要考虑



的特征值就行了,因为\(\gamma_i\)是矩阵\(A\)和\(A_{n-1}\)所共有的。

考虑\(Z\)的特征多项式:

\((\alpha-\lambda)\mathop{\prod}\limits_{i=1}^{s}(\beta_i-\lambda)-
\mathop{\sum}\limits_{j=1}^{s}b_j^2\mathop{\prod}\limits_{i \neq j}(\beta_i-\lambda)=0\)

假定\(\beta_i\)中只有\(t\)个不同的值,不失一般性,可令它们为\(\beta_1,\beta_2,\ldots,\beta_t\),

且重数为\(r_1,r_2,\ldots,r_s \quad \mathop{\sum}\limits_{i}r_i=s\)

等式左端有因子:

\(\mathop{\sum}\limits_{i=1}^{t}(\beta_i-\lambda)^{r_i-1}\)

因此,\(\beta_i\)为\(Z\)的特征值,重数为\(r_i-1\)

等式除以\(\mathop{\sum}\limits_{i=1}^{t}(\beta_i-\lambda)^{r_i}\)可得:

\(0=(\alpha-\lambda)-
\mathop{\sum}\limits_{i=1}^{t}c_i^2(\beta_i-\lambda)^{-1}
=a-f(\lambda)\)

\(Z\)的剩余的特征值是\(a-f(\lambda)=0\)的根。

根据正负的特点,和连续函数(实质上是分段的)根的存在性定理,可以知道

\(a-f(\lambda)\)的\(t+1\)个根\(\delta_i\)满足:

\(\delta_1>\beta_1>\delta_2>\ldots>\beta_t>\delta_{t+1}\)

这样所有根的序列就得到了,就是我们要证的。整理一下可以得到,

除了刚刚讲的\(t+1\)个根,

还有\(s-t\)个\(\beta_i\)相同的特征值,以及

\(n-s-1\)个\(\gamma_i\).

另外一个性质

这个性质不想去弄明白了

算法

我的理解这样的:

step1.选第一个特征,就是对角元最大的那个

step2.在第一个的基础上,再选一个,这次会形成一个\(2\times2\)的子矩阵,所以,需要选择令这个矩阵首特征值最大的第二个特征。

step3.反复进行,直到k?

这是前向的,还有对应的后向的,一个个减。论文推荐是,俩种都进行,然后挑二者中比较好的一个。

未免太复杂了些?

代码

只写了前向的代码:

import numpy as np
def You_eig_value(C): #幂法 只输出特征值
d = C.shape[1]
x1 = np.random.random(d)
while True:
x2 = C @ x1
x2 = x2 / np.sqrt(x2 @ x2)
if np.sum(np.abs(x2-x1)) < 0.0001:
break
else:
x1 = x2 return x1 @ C @ x1 def forward(C):
n = C.shape[0]
label1 = set(range(n))
label = [np.argsort(np.diag(C))[-1]]
label1 -= set(label)
count = 0
while len(label1) > 0:
count += 1
maxvalue = 0
maxi = -1
for i in label1:
value = You_eig_value(C[label+[i],:][:,label + [i]])
if value > maxvalue:
maxvalue = value
maxi = i
label.append(maxi)
label1 -= {maxi} return label f = open('C:/Users/biiig/Desktop/pitprops.txt')
C = []
for i in f:
C.append(list(map(float, i.split())))
f.close()
C = np.array(C)
forward(C) # [12, 6, 5, 9, 1, 0, 8, 7, 3, 2, 11, 4, 10]

Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms[贪婪算法选特征]的更多相关文章

  1. Sparse PCA: reproduction of the synthetic example

    The paper: Hui Zou, Trevor Hastie, and Robert Tibshirani, Sparse Principal Component Analysis, Journ ...

  2. Deflation Methods for Sparse PCA

    目录 背景 总括 Hotelling's deflation 公式 特点 Projection deflation 公式 特点 Schur complement deflation Orthogona ...

  3. Sparse PCA 稀疏主成分分析

    Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning   ...

  4. A direct formulation for sparse PCA using semidefinite programming

    目录 背景 Sparse eigenvectors(单个向量的稀疏化) 初始问题(low-rank的思想?) 等价问题 最小化\(\lambda\) 得到下列问题(易推) 再来一个等价问题 条件放松( ...

  5. Sparse Filtering 学习笔记(二)好特征的刻画

      Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...

  6. activity select problem(greedy algorithms)

    many activities will use the same place, every activity ai has its'  start time si and finish time f ...

  7. 机器学习:PCA(人脸识别中的应用——特征脸)

    一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = ...

  8. 用scikit-learn学习主成分分析(PCA)

    在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...

  9. 主成分分析(PCA)原理总结

    主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...

随机推荐

  1. c/c++ 标准库 map multimap元素访问

    标准库 map multimap元素访问 一,map,unordered_map下标操作 下标操作种类 功能描述 c[k] 返回关键字为k的元素:如果k不在c中,添加一个关键字为k的元素,并对其初始化 ...

  2. Vue 学习笔记之快速入门篇

    Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还便于与 ...

  3. zabbix 添加自动发现端口并监控

    最近在部署zabbix监控  有些服务器上开启的服务端口非常多  如果一个个添加监控会很繁琐,于是想到了自动发现规则  自动发现服务器上的服务端口并进行监控. 在zabbix客户端服务器上进行操作 1 ...

  4. Lua-pb 升级到Lua5.3

    项目lua库升级到5.3版本后,最头疼的就是原先的一些第三方库原先只是基于lua5.1设计的,比如protobuff 相关的的. 之前项目引入Lua-pb 实现protobuf的解析和使用,但是这个库 ...

  5. Python Numpy-基础教程

    目录 1. 为什么要学习numpy? 2. Numpy基本用法 2.1. 创建np.ndarry 2.2. Indexing and Slicing Boolean Index 2.3. Univer ...

  6. Alpha阶段 - 博客链接合集

    Alpha阶段 - 博客链接合集 项目Github地址 安卓端(Stardust):https://github.com/StardustProject/Stardust 服务器端(Gravel):h ...

  7. [JS]js中判断变量类型函数typeof的用法汇总[转]

    1.作用: typeof 运算符返回一个用来表示表达式的数据类型的字符串.  可能的字符串有:"number"."string"."boolean&q ...

  8. js格式化输入框内金额、银行卡号[转]

    这篇文章主要介绍了js格式化输入框内金额.银行卡号,采用“keyup”事件处理格式化,每4位数一组中间空格隔开,如何格式化输入框内金额.银行卡号,需要了解的朋友可以参考一下 我们在项目中经常遇到需要格 ...

  9. MySQL高级知识(十五)——主从复制

    前言:本章主要讲解MySQL主从复制的操作步骤.由于环境限制,主机使用Windows环境,从机使用用Linux环境.另外MySQL的版本最好一致,笔者采用的MySQL5.7.22版本,具体安装过程请查 ...

  10. nginx学习笔记(一)

    select模型主要是apache用   FD 文件描述符   soa架构 安装nginx ping baidu.com netstat -lntup 查看端口 cat /etc/redhat-rel ...