Introduction

Among simulation engineers, it is well accepted that the solution of a PDE can be envisioned as the following three general steps (actually, this was also my premature understanding during the early era of my study on numerical simulation).

  1. Expand the unknown function to be solved by a set of basis functions.
  2. Multiply both sides of the equation by a set of test functions and integrate the product over the solution domain.
  3. With the application of integration by parts, the space dimension of the integral is reduced by 1 and the appeared boundary integral can be used to apply predefined boundary conditions.

The formulation thus obtained, which discretizes the original continuous problem, is called weak form or variational problem, from which the weak solution results. At first glance, the above envisioned procedures could be applicable to any PDEs, at least, discretized system of equations can be constructed and system matrix can be filled. However, without a careful and crystal clear proof about the existence and uniqueness of the solution for the weak form or variational problem, the results can never be relied on - after all, any operation on the computer can produce something, usually huge amount of data, which is either truth or rubbish. What kind of meaning will be assigned to it and how much value we can extract from it depend on the wisdom, rationality and rigorousness of the human operator.

In this post, the proof for the existence and uniqueness of the solution of the following variational problem will be presented, which is the corner stone of numerical schemes such as the finite element method and boundary element method (BEM).

Let \(H_1\) and \(H_2\) be two Hilbert spaces, \(a(\cdot, \cdot): H_1 \times H_2 \rightarrow \mathbb{K}\) be a sesquilinear form with \(\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}\) (Note: when \(\mathbb{K} = \mathbb{R}\), \(a(\cdot, \cdot)\) is a bilinear form), \(l(\cdot): H_2 \rightarrow \mathbb{K}\) be a bounded linear functional on \(H_2\). The solution \(u \in H_1\) of the equation below will be sought under an arbitrarily given \(v \in H_2\):

\[
\begin{equation}
\label{eq:variational-problem}
a(u, v) = l(v) \quad (\forall v \in H_2)
\end{equation}
\]

In this post, we'll first show that the existence and uniqueness of \(u\) along with a priori estimate of its norm can be obtained thanks to the inf-sup condition. Secondly, by introducing the famous Lax-Milgram Lemma, the inf-sup condition can be relaxed to H-ellipticity condition which still preserves the solvability of the variational problem.

inf-sup condition

Definition (inf-sup condition) The continuous sesquilinear form \(a(\cdot, \cdot)\) satisfies the in-sup condition if there exists a constant \(\gamma > 0\), such that

\[
\begin{align}
\label{eq:inf-sup-condition-a}
\inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} & \geq \gamma > 0, \tag{a} \\
\label{eq:inf-sup-condition-b}
\forall v \in H_2 \backslash \{0\}: \sup_{u \in H_1 \backslash \{0\}} \abs{a(u, v)} &> 0. \tag{b}
\end{align}
\]

Remark

  1. For (a), first fix \(u \in H_1 \backslash \{0\}\), then vary \(v \in H_2 \backslash \{0\}\) and take the supremum of \(\frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}}\). Let \(A \in L(H_1, H_2')\) be the associated operator of \(a(\cdot, \cdot)\) satisfying \((Au, v) = a(u, v) \; (\forall u \in H_1, v \in H_2)\). Let \(\phi_u := Au \in H_2'\). Because \(u\) is already fixed so is its norm \(\norm{u}_{H_1}\), the supremum can be considered as a measure of the norm \(\norm{\phi_u}_{H_2'}\).
  2. For (b), \(v\) is firstly fixed and \(u\) is then varied. Because the supremum of the absolute value of the sesquilinear form should be strictly larger than 0, \(\phi_u\) cannot be a zero operator.

Theorem (Existence and uniqueness) The condition that the sesquilinear form \(a(\cdot, \cdot)\) satisfies the inf-sup condition is equivalent to the following condition: for all \(l \in H_2'\), the variational problem \eqref{eq:variational-problem} has a unique solution \(u \in H_1\), which satisfies the priori estimate

\[
\begin{equation}
\label{eq:priori-estimate}
\norm{u}_{H_1} \leq \frac{1}{\gamma} \norm{l}_{H_2'}.
\end{equation}
\]

Proof: A. Given the inf-sup condition, we prove the existence and uniqueness of the solution and the priori estimate.

  1. We'll show the associated operator \(A: H_1 \rightarrow H_2'\) of \(a(\cdot, \cdot)\) is continuous.

    Because \(a(\cdot, \cdot)\) is continuous, we have

    \[
    \abs{a(u, v)} \leq \norm{a} \norm{u}_{H_1} \norm{v}_{H_2} \quad (\forall u \in H_1, v \in H_2).
    \]

    Let \(\phi_u := Au = a(u, \cdot)\), then

    \[
    \abs{\phi_u(v)} = \abs{a(u, v)} \leq \norm{a} \norm{u}_{H_1} \norm{v}_{H_2} \quad (\forall u \in H_1, v \in H_2).
    \]

    Because \(u\) is given and fixed in \(\phi_u\), we define the constant \(C(a, u) := \norm{a} \norm{u}_{H_1}\), therefore \(\phi_u\) is bounded:

    \[
    \abs{\phi_u(v)} \leq C(a, u) \norm{v}_{H_2} \quad (\forall v \in H_2).
    \]

    It should be noted that when \(\phi_u\) is applied to \(v \in H_2\), a complex conjugate operation must be applied first to \(v\) due to the definition of \(a(\cdot, \cdot)\) which is complex conjugate linear with respect to its second argument. Therefore, \(\phi_u\) is a bounded complex conjugate linear operator from \(H_1\) to \(H_2^*\), where \(H_2^*\) is the anti-dual space of \(H_2\). Because the only difference between \(H_2^*\) and \(H_2'\) is a complex conjugate, the two spaces can be identified isometrically \(H_2^* \cong H_2'\). In the following, we use \(H_2'\) replacing \(H_2^*\) and let \(\phi_u\) inherently includes a complex conjugate operation, which makes \(\phi_u\) a bounded linear operator in \(H_2'\). According to this analysis, we know the operator \(A\) really maps \(u\) to an element in \(H_2'\).

    Then the norm of \(\phi_u\) in \(H_2'\) is

    \[
    \norm{\phi_u}_{H_2'} = \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{\phi_u(v)}}{\norm{v}_{H_2}} \leq \norm{a} \norm{u}_{H_1} < \infty \quad (\forall u \in H_1),
    \]

    based on which the operator \(A: H_1 \rightarrow H_2'\) is continuous.

  2. Prove the image of \(H_1\) under \(A\) is closed in \(H_2'\). The basic idea is that the closeness of \(A(H_1)\) in \(H_2'\) can be proved by showing that any Cauchy sequence in \(A(H_1)\) is convergent in \(A(H_1)\).

    According to (a) of the inf-sup condition

    \[
    \forall u \in H_1 \backslash \{0\}: \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} \geq \gamma > 0,
    \]

    we have the equivalent

    \[
    \forall u \in H_1 \backslash \{0\}: \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{Au(v)}}{\norm{v}_{H_2}} \geq \norm{u}_{H_1} \gamma.
    \]

    When \(u = 0\), the equality in the above holds. Therefore,

    \[
    \forall u \in H_1: \norm{Au}_{H_2'} = \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{Au(v)}}{\norm{v}_{H_2}} \geq \norm{u}_{H_1} \gamma.
    \]

    Let \((y_n)_{n \in \mathbb{N}}\) be a Cauchy sequence in \(A(H_1)\) and \((x_n)_{n \in \mathbb{N}}\) be the corresponding sequence in \(H_1\) such that \(A(x_n) = y_n\). For all \(\varepsilon > 0\), there exists a larger enough \(N_0 \in \mathbb{N}\) such that when \(m, n > N_0\),

    \[
    \varepsilon > \norm{y_m - y_n}_{H_2'} = \norm{A(x_m - x_n)}_{H_2'} \geq \norm{x_m - x_n}_{H_1} \gamma.
    \]

    From this we know that \((x_n)_{n \in \mathbb{N}}\) is also a Cauchy sequence in \(H_1\). Because \(H_1\) is a Hilbert space, there exists an \(x \in H_1\) such that

    \[
    \lim_{n \rightarrow \infty} \norm{x_n - x}_{H_1} = 0.
    \]

    According to step 1, \(A\) is a continuous linear operator, so we have

    \[
    \lim_{n \rightarrow \infty} \norm{A(x_n) - A(x)}_{H_2'} \leq \lim_{n \rightarrow \infty} \norm{A}_{H_2' \leftarrow H_1} \norm{x_n - x}_{H_1} = 0.
    \]

    Because \(A(x) \in A(H_1)\), any Cauchy sequence in \(A(H_1)\) is also convergent in \(A(H_1)\) and \(A(H_1)\) is closed.

  3. Prove \(A(H_1) = H_2'\) and the solution for the variational problem \eqref{eq:variational-problem} exists.

    Assume \(A(H_1)\) is a proper subset of \(H_2'\). Then there exists a non-zero \(y_0 \in A(H_1)^{\perp}\). Due to Riesz representation theorem, there exists \(y_0' \in (A(H_1)')\) such that

    \[
    \forall y \in A(H_1): \langle y_0', y \rangle_{A(H_1)' \times A(H_1)} = (y_0, y)_{H_2'} \; \text{and} \; \norm{y_0'}_{H_2''} = \norm{y_0}_{H_2'},
    \]

    where \(\langle \cdot, \cdot \rangle_{A(H_1)' \times A(H_1)}\) is the dual pairing. It can be seen that \(y_0'\) is a non-zero functional, which operates on \(A(H_1)\) and evaluates to zero. In addition, because \(A(H_1)\) is closed in \(H_2'\) according to the proof in step 2, Hahn-Banach theorem can be used to extend the domain of \(y_0'\) from \(A(H_1)\) to the whole space \(H_2'\), i.e. there exists a non-zero \(\tilde{y}_0' \in H_2''\) such that \(\tilde{y}_0'(y) = 0\) for all \(y \in A(H_1)\).

    Further because \(H_2\) is a Hilbert space, it is reflexive: \(H_2 \cong H_2''\), then \(\tilde{y}_0' \in H_2\) and for all \(y \in A(H_1)\)
    \[
    \tilde{y}_0' (y) = y(\tilde{y}_0') = (Au) (\tilde{y}_0') = a(u, \tilde{y}_0') = 0 \quad (u \in H_1, Au = y).
    \]
    Because \(y\) is arbitrarily selected in the image of \(A\), \(u\) can also vary arbitrarily in \(H_1\). Hence we can conclude that there exists a non-zero \(\tilde{y}_0' \in H_2\) such that
    \[
    \sup_{u \in H_1 \backslash \{0\}} \abs{a(u, \tilde{y}_0')} = 0,
    \]
    which contradicts (b) of the inf-sup condition. So we've proved \(A(H_1) = H_2'\) and the solution of the variational problem \eqref{eq:variational-problem} exists.

  4. Prove \(A \in L(H_1, H_2')\) is injective and the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2'\).
    For all \(l \in H_2'\), there exists a \(u \in H_1\) such that \(Au = l\) according to the proof in step 3. Assume there are two such solutions, namely, \(u_1\) and \(u_2\) being different, we have the following according to step 2
    \[
    \norm{Au_1 - Au_2}_{H_2'} = \norm{A(u_1 - u_2)}_{H_2'} \geq \norm{u_1 - u_2}_{H_1} \gamma \quad (u_1 - u_2 \in H_1 \backslash \{0\}),
    \]
    which contradicts \(\norm{Au_1 - Au_2}_{H_2'} = 0\). Therefore, \(A \in L(H_1, H_2')\) is injective and the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2'\).

  5. Prove the priori estimate.
    For all \(l \in H_2'\), there exists a unique \(u \in H_1\) such that \(Au = l\). According to step 2,
    \[
    \norm{l}_{H_2'} = \norm{Au}_{H_2'} \geq \norm{u}_{H_1} \gamma,
    \]
    which proves the priori estimate.

B. Given the existence and uniqueness of the solution and prove the inf-sup condition \eqref{eq:inf-sup-condition-a} and \eqref{eq:inf-sup-condition-b}.

  1. Prove \eqref{eq:inf-sup-condition-b} of the inf-sup condition.

    If the variational problem \eqref{eq:variational-problem} has a unique solution for all \(l \in H_2\), associated operator \(A \in L(H_1, H_2')\) of \(a(\cdot, \cdot)\) is bijective.

    If (b) of the inf-sup condition does not hold, there must exists \(y_0 \in H_2 \backslash \{0\}\) such that
    \[
    \sup_{u \in H_1 \backslash \{0\}} = \abs{a(u, y_0)} = 0 \Leftrightarrow \forall u \in H_1, a(u, y_0) = (Au)(y_0) = 0.
    \]
    Because \(H_2\) is reflexive, \(y_0\) can be considered in \(H_2''\):
    \[
    (Au)(y_0) = y_0(Au) = 0 \quad (\forall u \in H_1).
    \]
    Then from Riesz representation theorem, there exists \(\tilde{y}_0 \in H_2'\) corresponding to \(y_0 \in H_2''\) such that
    \[
    y_0(Au) = (\tilde{y}_0, Au)_{H_2'} = 0 \quad (\forall u \in H_1).
    \]
    Therefore, \(A(H_1)^{\perp} \neq \{0\}\), which contradicts the fact that \(A\) is bijective.

  2. Prove \eqref{eq:inf-sup-condition-a} of the inf-sup condition.
    \[
    \begin{aligned}
    \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} &= \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle Au, v \rangle_{H_2' \times H_2}}{\norm{u}_{H_1} \norm{v}_{H_2}} \\
    &= \inf_{w \in H_2' \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle w, v \rangle_{H_2' \times H_2}}{\norm{A^{-1} w}_{H_1} \norm{v}_{H_2}} \quad (w \in H_2', w = Au) \\
    &\geq \inf_{w \in H_2' \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle w, v \rangle_{H_2' \times H_2}}{\norm{A^{-1}}_{H_2 \leftarrow H_2'} \norm{w}_{H_2'} \norm{v}_{H_2}}
    \end{aligned}
    \]
    For the Hilbert space \(H_2\), there exists an isometry \(J_{H_2}: H_2 \rightarrow H_2'\). Let \(\tilde{w} \in H_2\) and \(J_{H_2} (\tilde{w}) = w\), we further have
    \[
    \begin{aligned}
    \inf_{u \in H_1 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_{H_1} \norm{v}_{H_2}} &\geq \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle J_{H_2} \tilde{w}, v \rangle_{H_2' \times H_2}}{\norm{J_{H_2} \tilde{w}}_{H_2'} \norm{v}_{H_2}} \quad (\text{Let $\norm{A^{-1}}_{H_2 \leftarrow H_2'} = \gamma^{-1}$.}) \\
    &= \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \frac{1}{\norm{\tilde{w}}_{H_2}} \sup_{v \in H_2 \backslash \{0\}} \frac{\langle J_{H_2} \tilde{w}, v \rangle_{H_2' \times H_2}}{\norm{v}_{H_2}} \quad (\because \norm{J_{H_2} \tilde{w}}_{H_2'} = \norm{\tilde{w}}_{H_2}) \\
    &= \gamma \inf_{\tilde{w} \in H_2 \backslash \{0\}} \frac{\norm{J_{H_2} \tilde{w}}_{H_2'}}{\norm{\tilde{w}}_{H_2}} \\
    &= \gamma
    \end{aligned}.
    \]

H-ellipticity condition and Lax-Milgram Lemma

Definition (H-ellipticity) Let \(H_1 = H_2 = H\) is reflexive Banach space, \(a: H \times H \rightarrow \mathbb{C}\) be a sesquilinear form. \(a(\cdot, \cdot)\) is H-elliptic if there exits \(\gamma > 0\) and \(\sigma \in \mathbb{C}\) with \(\abs{\sigma} = 1\), such that
\[
\forall u \in H: \Re(\sigma a(u, u)) \geq \gamma \norm{u}_H^2.
\]
Lemma (Lax-Milgram) Let \(H\) be a Hilbert space. The sesquilinear form \(a: H \times H \rightarrow \mathbb{C}\) is H-elliptic. Then the inf-sup condition holds.

Proof: From the H-ellipticity condition for \(a(\cdot, \cdot)\), we have
\[
\gamma \norm{u}_H^2 \leq \Re(\sigma a(u, u)) \leq \abs{\Re(\sigma a(u, u))} \leq \abs{\sigma a(u, u)} = \abs{\sigma} \abs{a(u, u)} = \abs{a(u, u)}.
\]
Substitute this inequality into the LHS of \eqref{eq:inf-sup-condition-a} of the inf-sup condition while selecting \(v\) to be equal to \(u\),
\[
\inf_{u \in H \backslash \{0\}} \sup_{v \in H \backslash \{0\}} \frac{\abs{a(u, v)}}{\norm{u}_H \norm{v}_H} \geq \inf_{u \in H \backslash \{0\}} \frac{\gamma \norm{u}_H^2}{\norm{u}_H \norm{u}_H} = \gamma > 0.
\]
This proves \eqref{eq:inf-sup-condition-a} of the inf-sup condition.

To prove \eqref{eq:inf-sup-condition-b} of the inf-sup condition, given an arbitrary \(v \in H \backslash \{0\}\) and let \(u = v\), we have
\[
\sup_{u \in H \backslash \{0\}} \abs{a(u, v)} \geq \abs{a(v, v)} \geq \gamma \norm{v}_H > 0.
\]
According to Lax-Milgram Lemma, we can still have the existence, uniqueness and priori estimate for the solution of the variation problem from the H-elliptic condition on \(a(\cdot, \cdot)\).

Summary

In this post, we present conditions and theorems along with their proofs, which ensures the existence and uniqueness for the solution of the general variational problem \(a(u, v) = l(v) \; (\forall l \in H_2)\). The underlying condition is the inf-sup condition. During the proof, the application of Hahn-Banach theorem is a key step for proving that the associated operator \(A \in L(H_1, H_2')\) of \(a(\cdot, \cdot)\) is surjective. Because of Lax-Milgram Lemma, the inf-sup condition can be relaxed to H-ellipticity condition.

Theorems for existence and uniqueness of variational problem的更多相关文章

  1. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  2. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  3. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  4. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  5. 海量数据挖掘MMDS week1: Link Analysis - PageRank

    http://blog.csdn.net/pipisorry/article/details/48579435 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  6. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  7. 将Emacs Org mode用于GTD任务管理

    在上一篇日志中,我简要介绍了如何围绕Emacs Org mode构建个人任务管理系统的基本思路与方法.因为Org mode体系庞大.功能繁杂,本文仅以提纲契领的方式介绍不同环节在Org mode中的操 ...

  8. 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data

    目录 Few-shot image classification Three regimes of image classification Problem formulation A flavor ...

  9. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

随机推荐

  1. Ridis

    Redis介绍 redis是一个key-value存储系统.和Memcached类似,它支持存储的values类型相对更多,包括字符串.列表.哈希散列表.集合,有序集合. 这些数据类型都支持push/ ...

  2. ROS入门学习

    ROS学习笔记 ROS入门网站; ROS入门书籍 ROS主要包含包括功能包.节点.话题.消息类型和服务; ROS功能包/软件包(Packages) ROS软件包是一组用于实现特定功能的相关文件的集合, ...

  3. 033_linux操作系统火焰图探测系统性能

    火焰图是定位疑难杂症的神器,比如 CPU 占用高.内存泄漏等问题.特别是 Lua 级别的火焰图,可以定位到函数和代码级别. 一.研究 https://moonbingbing.gitbooks.io/ ...

  4. linux c 时间函数

    1. time() 函数提供了 秒 级的精确度 time_t time(time_t * timer) 函数返回从UTC1970-1-1 0:0:0开始到现在的秒数 2. struct timespe ...

  5. 【原创】大叔经验分享(32)docker挂载文件修改生效

    docker经常需要挂载文件到容器中,比如启动nginx # docker run -d --name test_nginx -v /tmp/nginx.conf:/etc/nginx/nginx.c ...

  6. python----动态规划

    不能放弃治疗,每天都要进步!! 什么时候使用动态规划呢? 1. 求一个问题的最优解 2. 大问题可以分解为子问题,子问题还有重叠的更小的子问题 3. 整体问题最优解取决于子问题的最优解(状态转移方程) ...

  7. 【进阶2-2期】JavaScript深入之从作用域链理解闭包(转)

    这是我在公众号(高级前端进阶)看到的文章,现在做笔记   https://github.com/yygmind/blog/issues/18 红宝书(p178)上对于闭包的定义:闭包是指有权访问另外一 ...

  8. vue入手

    https://www.jianshu.com/p/dc5057e7ad0d    (最全入坑教程) http://doc.liangxinghua.com/vue-family/1.4.html(v ...

  9. 【转载】 Eclipse注释模板设置详解

     Eclipse注释模板设置详解 网站推荐: 金丝燕网(主要内容是 Java 相关) 木秀林网(主要内容是消息队列)

  10. Confluence 6 中修改默认的表现和内容

    Confluence 构建了一些有用的默认设置,这些设置能够让第一次访问使用 Confluence 系统的用户更好的了解系统.同时默认的内容将新空间和其他区域放置在 Confluence 中. Con ...