(2015华中科技大学理科实验班选拔)
已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.
(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数,求$c$变化时$x_3-x_1$的取值范围.
(2)若三个实数根为$a,b,c$,求$a,b,c$


分析:
$$\begin{cases}
x_1+x_2+x_3&=-a\\
x_1x_2+x_2x_3+x_3x_1&=b\\
x_1x_2x_3&=-c
\end{cases}$$
为方便起见记$x_2=t$
$(x_3-x_1)^2$
$=(x_3+x_1)^2-4x_1x_3$
$=(-a-t)^2+\dfrac{4c}{t}$
$=(-a-t)^2-\dfrac{4(t^3+at^2+bt)}{t}$
$=-3t^2-2at+a^2-4b$
又$(x^3+ax^2+bx+c)'=3x^2+2ax+b$由三次函数图像易知$t$在它的两个根之间,
二次函数$-3t^2-2at+a^2-4b$的最值在区间端点和对称轴处取得,

故所求范围为$\left[\sqrt{a^2-3b},2\sqrt{\dfrac{a^2}{3}-b}\right]$
$$\begin{cases}
a+b+c&=-a\\
ab+bc+ca&=b\\
abc&=-c
\end{cases}$$
得$c=0,a=0,b=0\vee c=0,a=1,b=-2\vee a=-\dfrac{1}{b},c=\dfrac{2}{b}-b$,
将$b$代入三次方程得$b^3+ab^2+b^2+c=0$再将$a=-\dfrac{1}{b},c=\dfrac{2}{b}-b$代入化简得
$b^4+b^3-2b^2+2=0$从而$b=-1$或者$b^3-2b+2=0$,利用代换$b=t+\dfrac{2}{3t},$代入化简得

$t^3+\dfrac{8}{27t^3}+2=0$
从而$t=\sqrt[3]{-1+\sqrt{\dfrac{19}{27}}}$
故有理解为\((a,b,c)=(0,0,0),(1,-1,-1),(1,-2,0)\),
无理解为\(\left(-\dfrac 1b,b,\dfrac 2b-b\right)\),其中\(b=t+\dfrac 2{3t}\),而\(t=\sqrt [3]{-1+\sqrt{\dfrac {19}{27}}}\).

MT【277】华中科技大学理科实验班选拔之三次方程的更多相关文章

  1. Minieye杯第十五届华中科技大学程序设计邀请赛现场同步赛 I Matrix Again

    Minieye杯第十五届华中科技大学程序设计邀请赛现场同步赛 I Matrix Again https://ac.nowcoder.com/acm/contest/700/I 时间限制:C/C++ 1 ...

  2. Aging Cell两篇连发 | 华中科技大学王建枝团队运用蛋白质组学技术发现具有AD早期诊断价值的血小板生物标志物

    阿尔茨海默症 (Alzheimer 's disease,AD) 是一种原发性的中枢神经系统退行性疾病.AD的主要临床症状是缓慢的认知功能减退,包括记忆.逻辑推理能力和语言功能的进行性丟失,最后发展为 ...

  3. Minieye杯第十五届华中科技大学程序设计邀请赛网络赛D Grid(简单构造)

    链接:https://ac.nowcoder.com/acm/contest/560/D来源:牛客网 题目描述 Give you a rectangular gird which is h cells ...

  4. H-Modify Minieye杯第十五届华中科技大学程序设计邀请赛现场赛

    题面见 https://ac.nowcoder.com/acm/contest/700#question 题目大意是有n个单词,有k条替换规则(单向替换),每个单词会有一个元音度(单词里元音的个数)和 ...

  5. Minieye杯第十五届华中科技大学程序设计邀请赛网络赛 部分题目

    链接:https://pan.baidu.com/s/12gSzPHEgSNbT5Dl2QqDNpA 提取码:fw39 复制这段内容后打开百度网盘手机App,操作更方便哦 D    Grid #inc ...

  6. 华中科技大学 ubuntu14.04源

    deb http://mirrors.hust.edu.cn/ubuntu/ trusty main restricteddeb-src http://mirrors.hust.edu.cn/ubun ...

  7. 在linux使用锐捷客户端上网(华中科技大学)

    第一步:下载锐捷客户端linux版本,下载网址为http://ncc.hust.edu.cn/cyxz/rzkhd.htm 第二步:解压该包,进入目录 #unzip RG_Supplicant_For ...

  8. 第十四届华中科技大学程序设计竞赛决赛同步赛 A - Beauty of Trees

    A - Beauty of Trees 题意: 链接:https://www.nowcoder.com/acm/contest/119/A来源:牛客网 Beauty of Trees 时间限制:C/C ...

  9. 第十四届华中科技大学程序设计竞赛决赛同步赛 F Beautiful Land(01背包,背包体积超大时)

    链接:https://www.nowcoder.com/acm/contest/119/F来源:牛客网 Beautiful Land 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1 ...

随机推荐

  1. NOIP2016解题报告

    天天听这几道题,但其实题面都没看过.今天做一下. 每道题看懂题后基本一分钟左右就切了.D2T3想的是\(O(n\log n)\)的堆做法,至少90分吧. D1T1模拟即可. D1T2每条路径拆成到根的 ...

  2. django 路由系统,数据库操作

    一.修改配置 数据库 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME':'dbname', 'USER': ...

  3. ElasticSearch(简称ES)

    Windows下安装ElasticSearch   ElasticSearch(简称ES)是一个基于Lucene的分布式全文搜索服务器,和SQL Server的全文索引(Fulltext Index) ...

  4. rest-framework序列化

    快速实例 Quickstart 序列化 开篇介绍: ---- 一切皆是资源,操作只是请求方式 ----book表增删改查 /books/ books /books/add/ addbook /book ...

  5. 如何使用RSS

    (转载: http://www.ruanyifeng.com/blog/2006/01/rss.html) 一. 自从我发现很多人不知道什么是RSS以后,我就一直想向大家介绍它,因为它太有用了,将来会 ...

  6. 文件操作mode学习总结-----Python学习总结【第四篇】:Python之文件操作(文件、正则、json、pickle)

    非常全的博客,防丢链接参考https://www.cnblogs.com/madsnotes/articles/5521551.html 1.文件操作 1.1 操作流程 1)文件打开 2)文件操作 3 ...

  7. setState的参数接收函数

  8. Day 4-8 hashlib加密模块

    HASH Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射 ...

  9. Flutter的输入框TextField

    TextFiled组件的API 先来看一下TextFiled的构造方法: const TextField({ Key key, this.controller, this.focusNode, thi ...

  10. 介绍Ajax与jQuery技术

    Ajxs技术(异步的JavaScript与XML)已有多种技术的组合 Ajax的优点是什么? 1.可以实现客户端的异步请求操作2.进而在不需要刷新页面的情况下与服务器进行通信,减少用户的等待时间3.减 ...