题目大意:给定 N*N 的棋盘,一共放 K 个国王,一共有多少种方法。

题解:

  • i&i<<1 判断是否每个 1 的位置之间都有 0。
  • i&j<<1 判断 i 中为 1 的位置与 j 中为 1 的位置是否存在右下角的影响。

    相比于铺砖问题,此题仅仅多了一个必须要放 k 个国王,那在此基础上加一个维度,表示放了多少个国王即可。

代码如下

#include <bits/stdc++.h>
using namespace std; int n,m,cnt[1<<9];
long long f[10][1<<9][100];
bool ins[1<<9]; void read_and_parse(){
scanf("%d%d",&n,&m);
for(int i=0;i<1<<n;i++)if(!(i&i<<1)){
ins[i]=1;
int res=0;
for(int j=0;j<n;j++)if(i>>j&1)++res;
cnt[i]=res;
}
} void solve(){
f[0][0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<1<<n;j++)if(ins[j])
for(int k=0;k<1<<n;k++)if(ins[k]&&(j&k)==0&&(j&k<<1)==0&&(j&k>>1)==0)
for(int w=m;w>=cnt[j];w--)
f[i][j][w]+=f[i-1][k][w-cnt[j]];
long long ans=0;
for(int i=0;i<1<<n;i++)if(ins[i])ans+=f[n][i][m];
printf("%lld\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P1896】互不侵犯的更多相关文章

  1. 洛谷 P1896 互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  2. 状压DP概念 及例题(洛谷 P1896 互不侵犯)

    状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...

  3. 洛谷P1896 互不侵犯

    又是一道状压DP求方案数的题... 多了一个放k个的限制,于是我们把数组多开一维. f[i][j][k]表示前i行放了j个,第i行状态为k的方案数. 然后老套路DFS转移,这次要多记录一个cnt表示上 ...

  4. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  5. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  6. 洛谷P1896||bzoj1087 [SCOI2005]互不侵犯

    bzoj1087 洛谷P1896 想了很久,太久没做状压都已经不会了... 状压每一行就好了 #include<cstdio> #include<algorithm> #inc ...

  7. 状压DP【洛谷P1896】 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  8. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  9. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  10. BZOJ1087=Codevs2451=洛谷P1896&P2326互不侵犯

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2885  Solved: 1693[Submit][ ...

随机推荐

  1. 用Python来操作redis 以及在Django中使用redis

    什么是Redis? Redis是一款开源的.高性能的键-值存储(key-value store).它常被称作是一款数据结构服务器(data structure server). Redis的键值可以包 ...

  2. Android——Activity的简绍

    Activity Activity的运行机制其实和JavaEE中的servlet很像,而我们的Android系统也就相当与其servlet容器,Activity在其中进行创建实例.初始化.运行.销毁等 ...

  3. 配置Google Gmail分类和过滤器

    简单的记两笔. 首先点击右上角的⚙️里面选择settings. 选择Filters and Blocked Addresses 在这个页面可以选择 create a new filter创建一个新的过 ...

  4. linux audit审计(6)--audit永久生效的规则配置

    定义reboot系统后,仍然生效的审计规则,有两种办法: 1.直接写入/etc/audit/audit.rules文件中,在service文件中需要加入ExecStartPost=-/sbin/aud ...

  5. AdminLTE 前端框架

    适合运维平台  后台管理系统 AdminLTE 是一个开源的后台控制面板和仪表盘 WebApp 模板. 这是一个快速的HTML模板,基于CSS框架的引导. 文档: http://adminlte.la ...

  6. Antd & ice

    Antd & ice Angular https://github.com/NG-ZORRO/ng-zorro-antd https://ng.ant.design/docs/introduc ...

  7. Puppet日常总结

    在工作中常常会有这样一种需求:某几个人需要某些测试服务器的root权限.比如,开发部门的张三,李四,王五,赵六需要rsync服务器的root权限.有些同学会说那直接 visudo在里面添加几个人不就行 ...

  8. Python自动化测试之selenium从入门到精通

    1. 安装selenium 首先确保python安装成功,输入python -V 在windows下使用pip安装selenium,详情如图所示: 在ubuntu下使用pip install sele ...

  9. Python——Flask框架——模板

    一.渲染模板 render_template 函数把Jinja2模板引擎集成到程序中 二.Jinja2变量过滤器 过滤器名 说明 safe 渲染值是不转义 capitalize 把值得首字母转换成大写 ...

  10. JS--innerHTML属性

    innerHTML属性,不是DOM的组成部分(常用) 获取标签里的文本内容,var span=document.getElementById("span").innerHTML; ...