UVALive 6915 Leveling Ground 倍增RMQ
Leveling Ground
题目连接:
Description
It is important to first level the ground before you build anything on top of it (e.g., new house, shed,
swimming pool, driveway, etc.), especially when there are hills on the land, otherwise whatever you
built will not be stable. In case you don’t understand, “leveling the ground” means making the ground
flat and even (having the same height). In this problem, you are given a land description and the
length of land — M — that you want to level; your task is to determine the minimum amount of land
you should dispose in order to have a level land of length M. Note that in this problem you are only
allowed to dispose land, not filling it.
The total length of the given land will be N, and the land will be encoded with the following format:
(1) / means ascending slope (disposing an ascending slope cost 0.5),
(2) \ means descending slope (disposing a descending slope cost 0.5),
(3) means flat (disposing a flat land cost 0),
(4) . means full land (disposing a full land cost 1).
Note that the input will only describe the land’s surface, thus (4) will not appear in any input. Also
note that (1) and (2) are not level.
For example, consider the following input.
Input : //_//_\_////\/
The input corresponds to the following land (which length is 31).
__ /_ __
/.._/...\ /..\ _
Land : /..........\ ___ /...._/.
............_/.../...........
...............................
Index : 1234567890123456789012345678901
Supposed we want to level a land of length M = 7, and for some reasons, we choose the land we
want to level to be at index [11, 17]. Recall that you are only allowed to dispose land, thus if you want
to level the land at [11, 17], you should level it such that the height is equal to the height of land at
index 14 (because it is the lowest point). In the following figure, ‘’ (stars) mark the land which should
be disposed.
__ /_ __ __ /_ __
/.._/... /..\ _ /.._/...| /..\ _
/.........** **_ /...._/. /.........| _ /...._/.
..........*******./........... ..........|____|./...........
............................... ...............................
Index : 1234567890123456789012345678901 1234567890123456789012345678901
If you observe, there are 12 stars in the left figure, they are:
• 1 ascending slope (at index: 15),
• 3 descending slopes (at indexes: 11, 12, and 13),
• 3 flat lands (at indexes: 14, 16, and 17), and
• 5 full lands (2 at index 11, 1 at index 12, 1 at index 16, and another 1 at index 17).
Therefore, the cost of leveling [11, 17] is: 1 * 0.5 + 3 * 0.5 + 3 * 0 + 5 * 1 = 7.
In this example, [11, 17] is not the best choice, you can do better.
Input
The first line of input contains T (T ≤ 50) denoting the number of cases. Each case begins with two
integers N and M (1 ≤ M ≤ N ≤ 1, 000, 000) denoting the total length of the land and the length of the
land which should be leveled respectively. The following line contains a string of length N describing
the land’s surface. The string will only contain character ‘/’, ‘\’, or ‘ ’, as described in the problem
statement.
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the minimum
amount of land which should be disposed to achieve a level land which length is M for that particular
case. Output this number with exactly one digit after the decimal point.
Explanation for 1st sample case:
This is the same case as the example in the problem statement. The minimum amount of land
which you should dispose is 3.5. You can achieve this by leveling lands at [25, 31].
__ /_ __ __ /_ __
/.._/...\ /..\ _ /.._/...\ /..* *
Land : /..........\ ___ /....___/. /..........\ ___ /...*******
............_/.../........... ............_/.../...........
............................... ...............................
Index : 1234567890123456789012345678901 1234567890123456789012345678901
You will dispose: 1 ascending slope (at index 30), 2 descending slopes (at index 15 and 16), 4 flat
lands (at index 27, 28, 29, and 31), and 2 full lands (at index 15 and 31). Therefore the total cost will
be: 1 * 0.5 + 2 * 0.5 + 4 * 0 + 2 * 1 = 3.5.
Explanation for 2nd sample case:
If you level the land at [3, 6] or [4, 7], you don’t need to dispose any land as they are already level
(have the same height).
Explanation for 3rd sample case:
Level the land at [8, 11], and you only need to dispose 1 ascending slope and 1 descending slope.
Sample Input
4
31 7
//_//_\_////\/
10 4
//____\/
12 4
\\///_
12 1
//////\
Sample Output
Case #1: 3.5
Case #2: 0.0
Case #3: 1.0
Case #4: 0.5
Hint
题意
给你一个类似山峰的东西,你可以使得一个连续的m长度的山峰变成这一块的最低值。
然后问你最小的花费是多少。
(题意还是比较烦的,自己读读吧,我说不是很清楚……
题解:
考虑滑块,我们维护区间和,和区间最小值,那么花费就是区间和减去区间最小值乘以这个区间的大小就好了。
然后我们类似滑块去维护就好了。
O(n)就用单调队列去维护最小值,前缀和维护区间和就行了。
nlogn的做法就相当多了……
代码
#include<bits/stdc++.h>
#define two(x) (1<<(x))
using namespace std;
const int maxn = 1e6+7;
int a[maxn],b[maxn];
char s[maxn];
int mm[maxn];
int c[maxn][21];
int two[maxn];
void initrmp(int n)
{
mm[0]=-1;
for(int i=1;i<=n;i++){
mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
}
}
int query(int l,int r){
int k = mm[r-l+1];
return min(c[l][k],c[r-(1<<k)+1][k]);
}
int cas = 0;
void solve(){
int n,m;
scanf("%d%d",&n,&m);
scanf("%s",s+1);
initrmp(n);
int now = 0;
for(int i=1;i<=n;i++){
if(s[i]=='/')a[i]=now,b[i]=1,now++;
if(s[i]=='\\')now--,a[i]=now,b[i]=1;
if(s[i]=='_')a[i]=now,b[i]=0;
c[i][0]=a[i];
}
for(int j=1;j<21;j++) for(int i = 1 ; i + ( 1 << j ) - 1 <= n ; ++ i) c[i][j]=min( c[i][j-1] , c[i + two(j-1)][j-1] );
long long sum = 0;
long long sum2 = 0;
for(int i=1;i<=m;i++){
sum+=1LL*a[i];
sum2+=1LL*b[i];
}
double Ans = 1e9;
Ans = 1.0*sum+0.5*sum2-1.0*m*query(1,m);
for(int i=m+1;i<=n;i++){
sum+=1LL*a[i]-1LL*a[i-m];
sum2+=1LL*b[i]-1LL*b[i-m];
Ans=min(Ans,1.0*sum+0.5*sum2-1.0*m*query(i-m+1,i));
}
printf("Case #%d: %.1f\n",++cas,Ans);
}
int main(){
//freopen("1.txt","r",stdin);
int t;
scanf("%d",&t);
while(t--)solve();
return 0;
}
UVALive 6915 Leveling Ground 倍增RMQ的更多相关文章
- 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp
题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...
- hdu 5726 GCD 暴力倍增rmq
GCD/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence ...
- 【bzoj1067】[SCOI2007]降雨量 倍增RMQ
题目描述 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年.例如2002,2003,2004和200 ...
- 【bzoj2006】[NOI2010]超级钢琴 倍增RMQ+STL-堆
题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中A ...
- Leveling Ground(数论,三分法,堆)
Leveling Ground(数论,三分法,堆) 给定n个数和a,b每次可以选择一段区间+a,-a,+b或-b,问最少操作几次能把他们都变成0.n<=1e5. 首先差分一下序列,问题就会变成了 ...
- 【bzoj2500】幸福的道路 树形dp+倍增RMQ+二分
原文地址:http://www.cnblogs.com/GXZlegend/p/6825389.html 题目描述 小T与小L终于决定走在一起,他们不想浪费在一起的每一分每一秒,所以他们决定每天早上一 ...
- 【bzoj3879】SvT 后缀数组+倍增RMQ+单调栈
题目描述 (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始位置来表示), ...
- UVALive 6915 J - Leveling Ground
思路: 简单模拟下.从左向右扫描一次,求出挖出该区间空地的花费,并取个最小值即可. 至于怎么求区间内的高度最小值,就用线段树就好了. #include <bits/stdc++.h> #d ...
- LCA算法解析-Tarjan&倍增&RMQ
原文链接http://www.cnblogs.com/zhouzhendong/p/7256007.html UPD(2018-5-13) : 细节修改以及使用了Latex代码,公式更加美观.改的过程 ...
随机推荐
- bzoj千题计划184:bzoj1261: [SCOI2006]zh_tree
http://www.lydsy.com/JudgeOnline/problem.php?id=1261 dp[l][r][dep] 区间[l,r]内的节点,根在dep层的最小代价 枚举根i,dp[ ...
- Ionic -- css
Header 固定在头部,可以包含标题标签,可以有左右按钮 样式:bar bar-header bar-light 第一个小节 第二个表示的是头部 第三个表示颜色 子头部,需要在ion-content ...
- Spark笔记之DataFrameNaFunctions
DataFrameNaFunctions用来对DataFrame中值为null或NaN的列做处理,处理分为三种类型: drop:根据条件丢弃含有null或NaN的行 fill:根据条件使用指定值填充值 ...
- (F. MST Unification)最小生成树
题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...
- MPC&MAGIC
MPC: Popularity-based Caching Strategy for Content Centric Networks MPC: most popular content MPC主要思 ...
- Dream_Spark-----Spark 定制版:003~Spark Streaming(三)
Spark 定制版:003~Spark Streaming(三) 本讲内容: a. Spark Streaming Job 架构和运行机制 b. Spark Streaming Job 容错架构和运行 ...
- python3之模块urllib
urllib是python内置的HTTP请求库,无需安装即可使用,它包含了4个模块: request:它是最基本的http请求模块,用来模拟发送请求 error:异常处理模块,如果出现错误可以捕获这些 ...
- Valid Parentheses & Longest Valid Parentheses
Valid Parentheses Given a string containing just the characters '(', ')', '{', '}', '[' and ']', det ...
- Linux驱动技术(五) _设备阻塞/非阻塞读写【转】
转自:http://www.cnblogs.com/xiaojiang1025/p/6377925.html 等待队列是内核中实现进程调度的一个十分重要的数据结构,其任务是维护一个链表,链表中每一个节 ...
- Linux监控重要进程的实现方法
Linux监控重要进程的实现方法 不管后台服务程序写的多么健壮,还是可能会出现core dump等程序异常退出的情况,但是一般情况下需要在无 人为干预情况下,能够自动重新启动,保证服务进程能够服务用户 ...