题目链接

最小步数这类,适合用迭代加深搜索。

用空格走代替骑士。

搜索时记录上一步防止来回走。

不需要每次判断是否都在位置,可以计算出不在对应位置的骑士有多少个。而且每次复原一个骑士至少需要一步。

空格是不计算未复原骑士数的。

//820kb	84ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define n (5)
typedef long long LL;
const int way_x[9]={1,1,2,2,-2,-2,-1,-1},way_y[9]={2,-2,1,-1,1,-1,2,-2};
const int End[6][6]=
{{0},
{0,1,1,1,1,1},
{0,0,1,1,1,1},
{0,0,0,2,1,1},
{0,0,0,0,0,1},
{0,0,0,0,0,0},
}; int mp[7][7];
char s[10]; bool DFS(int x,int y,int left,int sum,int las)
{
if(sum>left) return 0;
if(!sum) return 1;
for(int xn,yn,res,i=0; i<8; ++i)
if(i!=7-las&&(xn=x+way_x[i])>0&&(yn=y+way_y[i]) >0&&xn<=n&&yn<=n)
{
res=sum;
if(mp[xn][yn]==End[xn][yn]) ++res; std::swap(mp[x][y],mp[xn][yn]); if(mp[x][y]==End[x][y]) --res; bool f=DFS(xn,yn,left-1,res,i);
if(f) return 1;
std::swap(mp[x][y],mp[xn][yn]);
}
return 0;
} int main()
{
int T,sx,sy,init; scanf("%d",&T);
while(T--)
{
for(int i=1; i<=n; ++i)
{
scanf("%s",s+1);
for(int j=1; j<=n; ++j)
if(s[j]!='*') mp[i][j]=s[j]-'0';
else mp[i][j]=2,sx=i,sy=j;
}
init=0;
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(mp[i][j]!=End[i][j]) ++init;//init:至少需要 多少步。
if(sx!=3||sy!=3) --init;//空格不计算未复原骑士数。
// printf("init:%d\n",init);
for(int dep=init; ; ++dep)
if(dep==16) {puts("-1"); break;}
else if(DFS(sx,sy,dep,init,8)) {printf("%d\n",dep); break;}
}
return 0;
}

附上sb哈希的代码吧。。真是学傻了。

#include <map>
#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define n (5)
typedef long long LL;
const int way_x[9]={1,1,2,2,-1,-1,-2,-2},way_y[9]={2,-2,1,-1,2,-2,1,-1};
const int End[6][6]=
{{0},
{0,1,1,1,1,1},
{0,0,1,1,1,1},
{0,0,0,2,1,1},
{0,0,0,0,0,1},
{0,0,0,0,0,0},
}; int mp[7][7];
short Ans;
char s[10];
std::map<LL,short> vis;
std::set<LL> st; bool Victory()
{
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(mp[i][j]!=End[i][j]) return 0;
return 1;
}
LL Encode()
{
LL res=0;
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j) res=res*3+mp[i][j];
// if(Victory()){
// printf("%I64d:\n",res);
// for(int i=1; i<=n; ++i,putchar('\n'))
// for(int j=1; j<=n; ++j) printf("%d ",mp[i][j]);
// }
return res;
}
short DFS(int x,int y,short step,LL s)
{
if(step>15) return 16;
if(Ans<=step) return 17;
if(x==3&&y==3&&Victory()) {Ans=std::min(Ans,step); return step;} short res=17; LL ss;
for(int xn,yn,i=0; i<8; ++i)
if((xn=x+way_x[i])>0&&(yn=y+way_y[i])>0&&xn<=n&&yn<=n)
{
std::swap(mp[x][y],mp[xn][yn]);
ss=Encode();
if(!st.count(ss))
st.insert(ss),res=std::min(res,DFS(xn,yn,step+1,ss)),st.erase(ss);
std::swap(mp[x][y],mp[xn][yn]);
}
return res;
} int main()
{
int T,sx,sy; scanf("%d",&T);
while(T--)
{
Ans=16, st.clear(), vis.clear();
for(int i=1; i<=n; ++i)
{
scanf("%s",s+1);
for(int j=1; j<=n; ++j)
if(s[j]!='*') mp[i][j]=s[j]-'0';
else mp[i][j]=2,sx=i,sy=j;
}
LL s=Encode();
st.insert(s);
DFS(sx,sy,0,s);
printf("%d\n",Ans<=15?Ans:-1);
}
return 0;
}

BZOJ.1085.[SCOI2005]骑士精神(迭代加深搜索)的更多相关文章

  1. BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1800  Solved: 984[Submit][Statu ...

  2. Bzoj 1085: [SCOI2005]骑士精神 (dfs)

    Bzoj 1085: [SCOI2005]骑士精神 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 dfs + 剪枝. 剪枝方法: ...

  3. BZOJ 1085: [SCOI2005]骑士精神( IDDFS + A* )

    一开始写了个 BFS 然后就 T 了... 这道题是迭代加深搜索 + A* -------------------------------------------------------------- ...

  4. BZOJ 1085 [SCOI2005]骑士精神 【A*启发式搜索】

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2838  Solved: 1663 [Submit][St ...

  5. BZOJ 1085 骑士精神 迭代加深搜索+A*

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1085 题目大意: 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个 ...

  6. bzoj 1085 [SCOI2005]骑士精神——IDA*

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1085 迭代加深搜索. 估价函数是为了预计步数来剪枝,所以要优于实际步数. 没错,不是为了确定 ...

  7. [BZOJ 1085] [SCOI2005] 骑士精神 [ IDA* 搜索 ]

    题目链接 : BZOJ 1085 题目分析 : 本题中可能的状态会有 (2^24) * 25 种状态,需要使用优秀的搜索方式和一些优化技巧. 我使用的是 IDA* 搜索,从小到大枚举步数,每次 DFS ...

  8. [BZOJ 1085][SCOI2005]骑士精神(IDA*)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1085 分析: 首先第一感觉是宽搜,但是空间需要8^15*5*5,明显不够,又鉴于最大深 ...

  9. bzoj 1085: [SCOI2005]骑士精神

    Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士,且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵 ...

随机推荐

  1. 带你正确的使用List的retainAll方法求交集

    一. retainAll 方法 public boolean retainAll(Collection<?> c) { //调用自己的私有方法 return batchRemove(c, ...

  2. LFS、BLFS、ALFS、HLFS的区别

    转自:http://www.ha97.com/3927.html Linux From Scratch (LFS) 及其后代代表一种新方法,向用户揭示 Linux 操作系统是如何工作的.LFS 基于这 ...

  3. 字符串日期转化以及yyyy-MM-dd HH:mm:ss大小写解释

    字符串日期转化 字符串转换为Calendar对象: // 日期字符串 private String dateStr; // 将字符串转换后的Calender对象 private Calendar ca ...

  4. CF876 F 思维 枚举

    给你n个数,问有几个区间满足,区间内或操作大于区间内的任意数. 首先可以知道,两数或操作的结果必定不会小于两者间的最大值,也就是说对于一个区间中,不合法的状态只有两值或相等.那么我们可以考虑枚举每个数 ...

  5. 前端 ajax 改写登录界面

    SSM 整合项目开发到一个阶段,想慢慢地把前台框架等技术引入进来 突然碰到一个困惑好久的问题: ajax 替换原本 form 表单 post 提交登录: 一直 404 错误,心塞.... 最后发现原来 ...

  6. 20155310 2016-2017-2 《Java程序设计》第五周学习总结

    20155310 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 •收集对象的行为,像是新增对象的add()方法.移除对象的remove()方法等,都是定义在 ...

  7. Python 入门基础9 --函数基础2 实参与形参

    今日内容: 一.函数参数 1.形参与实参定义 2.实参分类 3.形参分类 4.可变参数的整体使用 一.形参与实参定义 def fn(参数们): pass 1.1 形参 定义函数,在括号内声明的变量名, ...

  8. [转]CMake cache

    CMakeCache.txt 可以将其想象成一个配置文件(在Unix环境下,我们可以认为它等价于传递给configure的参数). CMakeLists.txt 中通过 set(... CACHE . ...

  9. IPsec学习笔记

    IPsec是什么 IPsec(IP Security)是一系列为IP通信提供安全性的协议和服务的集合,工作在IP层,可以为上层协议和应用提供透明的安全服务.IPsec提供两种安全机制:认证和加密. 认 ...

  10. IDEA 2017的插件mybatis plugin

    https://my.oschina.net/u/3209432/blog/1584110 idea2017,用上面的方法安装mybatis plugin