样本标准差分母为何是n-1
大家好,今天给大家介绍标准差。标准差在统计领域是一个重要概念,有些地方晦涩难懂,特别是样本标准差的分母为何是n-1,而不是n或n-2,接下来我会一一介绍并用计算机模拟难点。
什么是标准差?下面看两组数[28,29,30,31,32],[10,20,30,40,50],它们的平均数都是30。这两组数是一致的吗?实际上,这两组数离散程度有很大区别。

用numpy模块计算,两组数的标准差相差10倍


方差是实际值与期望值之差平方的平均值。方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S2。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。标准差就是方差的平方根。方差和标准差用于不同场合,方便计算。
(标准差英文解释)

方差公式

标准差公式

难点来了,总体标准差和样本标准差的公式是有区别的,如下图

样本标准差公式中,分母是n-1。

为何样本标准差的分母为何是n-1,而不是n或n-2?
我们用计算机建模,环境Anaconda(python2.7)

参数解释:
Sigma表示总体标准差
S表示样本标准差
ddofValue=0 表示样本标准差分母是n
ddofValue=1 表示样本标准差分母是n-1
ddofValue=2 表示样本标准差分母是n-2
算法思路:
1.模拟出一个总体(服从正态分布的1000个随机数)
2. 从总体中随机抽样(100个随机数)
3.分别算出总体和样本的标准差,然后相减得到distance差值
4.循环1000次试验,把1000个distance相加,得到total_distance
5.在步骤3中,分别对样本标准差的分母取n, n-1,n-2, 最终得到dict_modes
观察dict_modes,ddof1的绝对值最小3.8
ddof1=1 表示样本标准差分母是n-1

总结:s样本标准差的分母采用n-1更加接近真实的总体标准差。通过计算机模拟,我们证明了为什么样本标准差的分母n-1比较合适,而不是n或n-2。
源代码:
如果允许代码有任何问题,请反馈至邮箱231469242@qq.com
# -*- coding: utf-8 -*-
'''
为什么样本标准差的分母是n-1
'''
import random
import numpy as np
#试验次数
trial=1000
#正态分布总体大小
size_total=1000
#正态分布样本大小
size_sample=100
#分母状态
#ddofValue=0 表示样本标准差分母是n
#ddofValue=1 表示样本标准差分母是n-1
#ddofValue=2 表示样本标准差分母是n-2
list_ddofValues=[0,1,2]
#返回样本标准差和总体标准差的距离总和
def Total_distance(ddofValue):
#总体标准差
和样本标准差的差值
total_distance=0
for i in range(trial):
normal_values=list(np.random.normal(size=size_total))
#总体标准差
sigma=np.std(normal_values,ddof=0)
#随机抽样
sample=random.sample(normal_values,size_sample)
s=np.std(sample,ddof=ddofValue)
distance=sigma-s
total_distance+=distance
return total_distance
#选择最佳模型
def Dict_modes():
distance_ddof0=Total_distance(list_ddofValues[0])
distance_ddof1=Total_distance(list_ddofValues[1])
distance_ddof2=Total_distance(list_ddofValues[2])
dict_modes={}
dict_modes["ddof0"]=distance_ddof0
dict_modes["ddof1"]=distance_ddof1
dict_modes["ddof2"]=distance_ddof2
return dict_modes
dict_modes=Dict_modes()
print dict_modes
'''
for i in range(trial):
normal_values=list(np.random.normal(size=n))
#总体标准差
sigma=np.std(normal_values,ddof=0)
#plt.hist(normal_values)
#随机抽样
sample=random.sample(normal_values,100)
#plt.hist(sample)
s=np.std(sample,ddof=ddofValue)
distance=sigma-s
total_distance+=distance
print"when ddofValue is:",ddofValue
print"Distance:",total_distance
'''
End.
样本标准差分母为何是n-1的更多相关文章
- C#基础_C#计算样本标准差和总体标准差
首先我们先了解样本标准差和总体标准差: 样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1)) 总体标准差=σ=sqrt(( ...
- 样本方差:为嘛分母是n-1
在样本方差计算式中,我们使用Xbar代替随机变量均值μ. 容易证明(参考随便一本会讲述样本方差的教材),只要Xbar不等于μ,sigma(Xi-Xbar)2必定小于sigma(Xi-μ)2. 然而,要 ...
- 为什么样本方差(sample variance)的分母是 n-1?
为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...
- 为什么样本方差分母是n-1
https://blog.csdn.net/qq_39521554/article/details/79633207 为什么样本方差的分母是n-1?为什么它又叫做无偏估计? 至于为什么是n-1,可以看 ...
- 去除zabbix calculate 模式下,有时候分母为零的情况(Cannot evaluate expression: division by zero. )
zabbix的监控类型支持一种calculate的方式,可以对几个item结果进行简单的计算,但有时会出现分母为零的情况,这时候监控项就会报错 Cannot evaluate expression: ...
- Codeforces Round #450 (Div. 2) B. Position in Fraction【数论/循环节/给定分子m 分母n和一个数c,找出c在m/n的循环节第几个位置出现,没出现过输出-1】
B. Position in Fraction time limit per test 1 second memory limit per test 256 megabytes input stand ...
- 为什么方差的分母有时是n,有时是n-1 源于总体方差和样本方差的不同
为什么样本方差(sample variance)的分母是 n-1? 样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的.无偏的估计(unbiased estimator)比有偏估计(bia ...
- Excel查询序列所相应的值-vLoopup函数,求比例分子改变但分母不变
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWV3ZWlvdXlhbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- 分母为0的坑(float)
分母不能为0 对于int 类型,如果分母为0,在程序运行时,会报错. 而对于float 类型,如果分母为0,则不会报错,而是会返回一个infinity(无穷大),也就是NAN. 因为除一个无穷小的数, ...
随机推荐
- banner 跟随鼠标呈现视差效果
参考 Element 官网,利用 js / jq 和 css3, 实现某图片随着鼠标移动呈现的视差效果. <!DOCTYPE html> <html> <head> ...
- Java类加载器学习笔记
今后一段时间会全面读一下<深入理解Java虚拟机> 在这里先记一下在网上看到的几篇介绍 类加载器 的文章,等读到虚拟机类加载机制再详细介绍. 超详细Java中的ClassLoader详解 ...
- C#对战小游戏,持续更新(里面暂无内容,标记插眼)
做的乱七八糟的 很明显的一点,对集合.数组.类的理解和运用 很差.很差.很差 今儿不做了,马德,头都肿大了 休息一下,捋一捋
- Jmeter(八)-发送JDBC请求
下午花了两个小时研究了一下Jmeter发送JDBC请求,现在把基本操作流程分享一下. 做JDBC请求,首先需要两个jar包:mysql驱动-mysql-connector-java-5.1.13-bi ...
- How to export data from Thermo-Calc 如何从Thermo-calc导出文本数据
记录20180510 问题:如何从thermo-calc导出文本数据供origin绘图? 解决: In Thermo-Calc graphical mode, you can just add a ' ...
- Nuxeo 认证绕过和RCE漏洞分析(CVE-2018-16341)
简介 Nuxeo Platform是一款跨平台开源的企业级内容管理系统(CMS).nuxeo-jsf-ui组件处理facelet模板不当,当访问的facelet模板不存在时,相关的文件名会输出到错误页 ...
- Arcengine效率探究之一——属性的读取(转载)
http://blog.csdn.net/lk103852503/article/details/6566652 在写一个对属性表的统计函数时,发现执行速度奇慢无比,百思不得其解,其实算法并不复杂,后 ...
- PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径
模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...
- 从两个设计模式到前端MVC-洪宇
引言 本文将从策略模式和观察者模式两个设计模式讲起,接着过渡到一个经典的复合模式- MVC架构,进而介绍MVC在Web上的适应-Model2架构.之后,我们将视野扩展到前端MVC,看一看前端MVC经典 ...
- Linux内核分析——第二周学习笔记20135308
第二周 操作系统是如何工作的 第一节 函数调用堆栈 存储程序计算机:是所有计算机基础的框架 堆栈:计算机中基础的部分,在计算机只有机器语言.汇编语言时,就有了堆栈.堆栈机制是高级语言可以运行的基础. ...
