https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

大家好,今天给大家介绍标准差。标准差在统计领域是一个重要概念,有些地方晦涩难懂,特别是样本标准差的分母为何是n-1,而不是n或n-2,接下来我会一一介绍并用计算机模拟难点。

什么是标准差?下面看两组数[28,29,30,31,32],[10,20,30,40,50],它们的平均数都是30。这两组数是一致的吗?实际上,这两组数离散程度有很大区别。

用numpy模块计算,两组数的标准差相差10倍

方差是实际值与期望值之差平方的平均值。方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S2。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。标准差就是方差的平方根。方差和标准差用于不同场合,方便计算。

(标准差英文解释)

方差公式

标准差公式

难点来了,总体标准差和样本标准差的公式是有区别的,如下图

样本标准差公式中,分母是n-1。

为何样本标准差的分母为何是n-1,而不是n或n-2?

我们用计算机建模,环境Anaconda(python2.7)

参数解释:

Sigma表示总体标准差

S表示样本标准差

ddofValue=0 表示样本标准差分母是n

ddofValue=1 表示样本标准差分母是n-1

ddofValue=2 表示样本标准差分母是n-2

算法思路:

1.模拟出一个总体(服从正态分布的1000个随机数)

2. 从总体中随机抽样(100个随机数)

3.分别算出总体和样本的标准差,然后相减得到distance差值

4.循环1000次试验,把1000个distance相加,得到total_distance

5.在步骤3中,分别对样本标准差的分母取n, n-1,n-2,  最终得到dict_modes

观察dict_modes,ddof1的绝对值最小3.8

ddof1=1 表示样本标准差分母是n-1

总结:s样本标准差的分母采用n-1更加接近真实的总体标准差。通过计算机模拟,我们证明了为什么样本标准差的分母n-1比较合适,而不是n或n-2。

源代码:

如果允许代码有任何问题,请反馈至邮箱231469242@qq.com

# -*- coding: utf-8 -*-

'''

为什么样本标准差的分母是n-1

'''

import random

import numpy as np

#试验次数

trial=1000

#正态分布总体大小

size_total=1000

#正态分布样本大小

size_sample=100

#分母状态

#ddofValue=0 表示样本标准差分母是n

#ddofValue=1 表示样本标准差分母是n-1

#ddofValue=2 表示样本标准差分母是n-2

list_ddofValues=[0,1,2]

#返回样本标准差和总体标准差的距离总和

def Total_distance(ddofValue):

#总体标准差
和样本标准差的差值

total_distance=0

for i in range(trial):

normal_values=list(np.random.normal(size=size_total))

#总体标准差

sigma=np.std(normal_values,ddof=0)

#随机抽样

sample=random.sample(normal_values,size_sample)

s=np.std(sample,ddof=ddofValue)

distance=sigma-s

total_distance+=distance

return total_distance

#选择最佳模型

def Dict_modes():

distance_ddof0=Total_distance(list_ddofValues[0])

distance_ddof1=Total_distance(list_ddofValues[1])

distance_ddof2=Total_distance(list_ddofValues[2])

dict_modes={}

dict_modes["ddof0"]=distance_ddof0

dict_modes["ddof1"]=distance_ddof1

dict_modes["ddof2"]=distance_ddof2

return dict_modes

dict_modes=Dict_modes()

print dict_modes

'''

for i in range(trial):

normal_values=list(np.random.normal(size=n))

#总体标准差

sigma=np.std(normal_values,ddof=0)

#plt.hist(normal_values)

#随机抽样

sample=random.sample(normal_values,100)

#plt.hist(sample)

s=np.std(sample,ddof=ddofValue)

distance=sigma-s

total_distance+=distance

print"when ddofValue is:",ddofValue

print"Distance:",total_distance

'''

End.

样本标准差分母为何是n-1的更多相关文章

  1. C#基础_C#计算样本标准差和总体标准差

    首先我们先了解样本标准差和总体标准差: 样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1)) 总体标准差=σ=sqrt(( ...

  2. 样本方差:为嘛分母是n-1

    在样本方差计算式中,我们使用Xbar代替随机变量均值μ. 容易证明(参考随便一本会讲述样本方差的教材),只要Xbar不等于μ,sigma(Xi-Xbar)2必定小于sigma(Xi-μ)2. 然而,要 ...

  3. 为什么样本方差(sample variance)的分母是 n-1?

    为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...

  4. 为什么样本方差分母是n-1

    https://blog.csdn.net/qq_39521554/article/details/79633207 为什么样本方差的分母是n-1?为什么它又叫做无偏估计? 至于为什么是n-1,可以看 ...

  5. 去除zabbix calculate 模式下,有时候分母为零的情况(Cannot evaluate expression: division by zero. )

    zabbix的监控类型支持一种calculate的方式,可以对几个item结果进行简单的计算,但有时会出现分母为零的情况,这时候监控项就会报错 Cannot evaluate expression: ...

  6. Codeforces Round #450 (Div. 2) B. Position in Fraction【数论/循环节/给定分子m 分母n和一个数c,找出c在m/n的循环节第几个位置出现,没出现过输出-1】

    B. Position in Fraction time limit per test 1 second memory limit per test 256 megabytes input stand ...

  7. 为什么方差的分母有时是n,有时是n-1 源于总体方差和样本方差的不同

    为什么样本方差(sample variance)的分母是 n-1? 样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的.无偏的估计(unbiased estimator)比有偏估计(bia ...

  8. Excel查询序列所相应的值-vLoopup函数,求比例分子改变但分母不变

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveWV3ZWlvdXlhbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  9. 分母为0的坑(float)

    分母不能为0 对于int 类型,如果分母为0,在程序运行时,会报错. 而对于float 类型,如果分母为0,则不会报错,而是会返回一个infinity(无穷大),也就是NAN. 因为除一个无穷小的数, ...

随机推荐

  1. datatables.js 简单使用--弹出编辑框或添加数据框

    内容:选中某一条记录,弹出编辑框 环境:asp.net mvc ,  bootstrap 显示效果: 代码: 至于怎么弄多选框,在上一篇博客里已经有说明. 主要用到了bootstrap的模态窗,下面代 ...

  2. post请求参数Json字符串包含数组的校验和处理

    传入参数类型 {"aaa":"aaaa","bbb":"bbb","ccc":"ccc&q ...

  3. git 报错 error: insufficient permission for adding an object to repository database ./objects

    参照:http://stackoverflow.com/questions/1918524/error-pushing-to-github-insufficient-permission-for-ad ...

  4. OpenGL:使用顶点数组法绘制正六面体

    在今天的opengl的课程以及实验中,我们学习了如何使用顶点数组的方法来绘制图形,但相信还有很多同学对它的实际使用方法不太了解,我们就用我们今天实验课上的实例来简单讲解一下 题目及要求 绘制一个正六面 ...

  5. 机器视觉及图像处理系列之一(C++,VS2015)——搭建基本环境

    自<人脸识别>系列发布至今,已一年多矣,期间除答复些许同好者留言外,未再更新文,盖因项目所迫,不得已转战它途,无暇.无料更博耳.其时,虽人已入项目中,然终耿怀于人脸识别方案之谬.初,写此文 ...

  6. IOTA price analysis

    Iota coinchart Look at the trendline drawn in red color, at the very first beginning of this month, ...

  7. Final互评------《弹球学成语》---- 杨老师粉丝群

    一.基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题;  N(Need,需求):本产品面相青少年及小学生,基于这些用户数量再加上一些休闲玩家,需求量还是比较大的.   A ...

  8. 【SE】Week3 : 四则运算式生成评分工具Extension&Release Version(结对项目)

    Foreword 此次的结对项目终于告一段落,除了本身对软件开发的整体流程有了更深刻的了解外,更深刻的认识应该是结对编程对这一过程的促进作用. 在此想形式性但真心地啰嗦几句,十分感谢能端同学能够不厌其 ...

  9. Daily Scrum NO.1

    工作概况 符美潇(PM): 今日工作 1.根据开发进程分配第一步开发工作,对相应的成员提出今日的开发要求:要求成员自己所负责的线程池,动态爬取,去重,文件分类等部分进行资料的相关了解. 2.Daily ...

  10. 20135202闫佳歆--week6 分析Linux内核创建一个新进程的过程——实验及总结

    week 6 实验:分析Linux内核创建一个新进程的过程 1.使用gdb跟踪创建新进程的过程 准备工作: rm menu -rf git clone https://github.com/mengn ...