BFS和DFS算法
昨晚刚昨晚华为笔试题,用到了BFS和DFS,可惜自己学艺不精,忘记了实现原理,现在借用大佬写的内容给自己做个提高
转自:https://www.jianshu.com/p/70952b51f0c8
图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。
图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。
广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
用一副图来表达这个流程如下:





- 初始状态,从顶点1开始,队列={1}
- 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
- 访问2的邻接结点,2出队,4入队,队列={3,4}
- 访问3的邻接结点,3出队,队列={4}
- 访问4的邻接结点,4出队,队列={ 空}
结点5对于1来说不可达。
上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 1, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0 }
};
BFS核心代码如下:
#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void BFS(int start)
{
queue<int> Q;
Q.push(start);
visited[start] = ;
while (!Q.empty())
{
int front = Q.front();
cout << front << " ";
Q.pop();
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[front - ][i - ] == )
{
visited[i] = ;
Q.push(i);
}
}
}
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
BFS(i);
}
return ;
}
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:






- 初始状态,从顶点1开始
- 依次访问过顶点1,2,3后,终止于顶点3
- 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
- 从顶点5回溯到顶点2,并且终止于顶点2
- 从顶点2回溯到顶点1,并终止于顶点1
- 从顶点4开始访问,并终止于顶点4
上面的图可以通过如下邻接矩阵表示:
int maze[][] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
DFS核心代码如下(递归实现):
#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
visited[start] = ;
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[start - ][i - ] == )
DFS(i);
}
cout << start << " ";
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}
非递归实现如下,借助一个栈:
#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
stack<int> s;
s.push(start);
visited[start] = ;
bool is_push = false;
while (!s.empty())
{
is_push = false;
int v = s.top();
for (int i = ; i <= N; i++)
{
if (maze[v - ][i - ] == && !visited[i])
{
visited[i] = ;
s.push(i);
is_push = true;
break;
}
}
if (!is_push)
{
cout << v << " ";
s.pop();
} }
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}
有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。
BFS和DFS算法的更多相关文章
- 邻接矩阵实现Dijkstra算法以及BFS与DFS算法
//============================================================================ // Name : MatrixUDG.c ...
- 15 图-图的遍历-基于邻接矩阵实现的BFS与DFS算法
算法分析和具体步骤解说直接写在代码注释上了 TvT 没时间了等下还要去洗衣服 就先不赘述了 有不明白的欢迎留言交流!(估计是没人看的了) 直接上代码: #include<stdio.h> ...
- BFS与DFS算法解析
1)前言 和树的遍历类似,图的遍历也是从图中某点出发,然后按照某种方法对图种所有顶点进行访问,且仅访问一次. 但是图的遍历相对树的遍历更为复杂,因为图中任意顶点都能与其他顶点相邻,所以在图的遍历中必须 ...
- BFS/DFS算法介绍与实现(转)
广度优先搜索(Breadth-First-Search)和深度优先搜索(Deep-First-Search)是搜索策略中最经常用到的两种方法,特别常用于图的搜索.其中有很多的算法都用到了这两种思想,比 ...
- 算法录 之 BFS和DFS
说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...
- 算法学习之BFS、DFS入门
算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...
- 算法基础:BFS和DFS的直观解释
算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数 ...
- SPFA算法的判负环问题(BFS与DFS实现)
经过笔者的多次实践(失败),在此温馨提示:用SPFA判负环时一定要特别小心! 首先SPFA有BFS和DFS两种实现方式,两者的判负环方式也是不同的. BFS是用一个num数组,num[x] ...
- BFS与DFS常考算法整理
BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...
随机推荐
- 【Ansible 文档】【译文】配置文件
这里说明一下配置文件的内容,原文地址:http://docs.ansible.com/ansible/latest/intro_configuration.html 这个与[Ansible 文档]配置 ...
- 详解coredump
一,什么是coredump 我们经常听到大家说到程序core掉了,需要定位解决,这里说的大部分是指对应程序由于各种异常或者bug导致在运行过程中异常退出或者中止,并且在满足一定条件下(这里为什么说需要 ...
- python第四十二课——__str__(self)函数
4.__str__(self): 作用: 创建完对象,直接打印对象名/引用名我们得到的是对象的内存信息(十六进制的地址信息), 这串数据我们程序员并不关心,我们更希望看到的是属性赋值以后的内容(属性赋 ...
- NOIP模板总结
NOIP模板总结 进考场先打一份缺省源: # include <cstdio> # include <iostream> # include <cstring> # ...
- java 计算百分数方法
俗话说好记性不如烂笔头,故记之. DecimalFormat decimalFormat = new DecimalFormat("##.00%"); System.out.pri ...
- 随手练——P1141 01迷宫
1.暴力版 本质上就是求连通块数量,那么DFS或者BFS都行,暴力跑. 写完发现题目比较特殊,m次提问,那每次都暴力搜,肯定是要跑死了. #include <iostream> #incl ...
- RFS实例登录126邮箱/利用cookie登陆百度
可以直接添加用户关键字,也可以新建资源,将用户关键字添加入资源,然后导入整个资源文件 用户关键字内部实现如下: 打开126邮箱首页: Open Browser Http://mail.126.com ...
- 用scp命令来通过ssh传输文件,ssh推送.py程序到CentOS7服务器端出现lost connection错误
ssh推送.py程序到CentOS7服务器端运行出现lost connection错误 (base) F:\workspace>dir 驱动器 F 中的卷是 新加卷 卷的序列号是 C2B9-62 ...
- DQN(Deep Reiforcement Learning) 发展历程(一)
目录 马尔可夫理论 马尔可夫性质 马尔可夫过程(MP) 马尔可夫奖励过程(MRP) 值函数(value function) MRP求解 马尔可夫决策过程(MDP) 效用函数 优化的值函数 贝尔曼等式 ...
- 虚拟机和主机ping不通解决的方法
虚拟机和主机ping不通 一般有3种方式:NAT.bridged .host-Only. Bridged方式: 在图1中Network connection中选中第1项,即在vm ware虚拟机属性里 ...