昨晚刚昨晚华为笔试题,用到了BFS和DFS,可惜自己学艺不精,忘记了实现原理,现在借用大佬写的内容给自己做个提高

转自:https://www.jianshu.com/p/70952b51f0c8

图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。
图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
用一副图来表达这个流程如下:

从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空}
    结点5对于1来说不可达。
    上面的图可以通过如下邻接矩阵表示:

  

int maze[5][5] = {
{ 0, 1, 1, 0, 0 },
{ 0, 0, 1, 1, 0 },
{ 0, 1, 1, 1, 0 },
{ 1, 0, 0, 0, 0 },
{ 0, 0, 1, 1, 0 }
};

BFS核心代码如下:

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void BFS(int start)
{
queue<int> Q;
Q.push(start);
visited[start] = ;
while (!Q.empty())
{
int front = Q.front();
cout << front << " ";
Q.pop();
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[front - ][i - ] == )
{
visited[i] = ;
Q.push(i);
}
}
}
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
BFS(i);
}
return ;
}
深度优先搜索(DFS)
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:

从顶点1开始做深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
  4. 从顶点5回溯到顶点2,并且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

上面的图可以通过如下邻接矩阵表示:

int maze[][] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};

DFS核心代码如下(递归实现):

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
visited[start] = ;
for (int i = ; i <= N; i++)
{
if (!visited[i] && maze[start - ][i - ] == )
DFS(i);
}
cout << start << " ";
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}

非递归实现如下,借助一个栈:

#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , },
{ , , , , }
};
int visited[N + ] = { , };
void DFS(int start)
{
stack<int> s;
s.push(start);
visited[start] = ;
bool is_push = false;
while (!s.empty())
{
is_push = false;
int v = s.top();
for (int i = ; i <= N; i++)
{
if (maze[v - ][i - ] == && !visited[i])
{
visited[i] = ;
s.push(i);
is_push = true;
break;
}
}
if (!is_push)
{
cout << v << " ";
s.pop();
} }
}
int main()
{
for (int i = ; i <= N; i++)
{
if (visited[i] == )
continue;
DFS(i);
}
return ;
}

有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。

BFS和DFS算法的更多相关文章

  1. 邻接矩阵实现Dijkstra算法以及BFS与DFS算法

    //============================================================================ // Name : MatrixUDG.c ...

  2. 15 图-图的遍历-基于邻接矩阵实现的BFS与DFS算法

    算法分析和具体步骤解说直接写在代码注释上了 TvT 没时间了等下还要去洗衣服 就先不赘述了 有不明白的欢迎留言交流!(估计是没人看的了) 直接上代码: #include<stdio.h> ...

  3. BFS与DFS算法解析

    1)前言 和树的遍历类似,图的遍历也是从图中某点出发,然后按照某种方法对图种所有顶点进行访问,且仅访问一次. 但是图的遍历相对树的遍历更为复杂,因为图中任意顶点都能与其他顶点相邻,所以在图的遍历中必须 ...

  4. BFS/DFS算法介绍与实现(转)

    广度优先搜索(Breadth-First-Search)和深度优先搜索(Deep-First-Search)是搜索策略中最经常用到的两种方法,特别常用于图的搜索.其中有很多的算法都用到了这两种思想,比 ...

  5. 算法录 之 BFS和DFS

    说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...

  6. 算法学习之BFS、DFS入门

    算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...

  7. 算法基础:BFS和DFS的直观解释

    算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数 ...

  8. SPFA算法的判负环问题(BFS与DFS实现)

    经过笔者的多次实践(失败),在此温馨提示:用SPFA判负环时一定要特别小心! 首先SPFA有BFS和DFS两种实现方式,两者的判负环方式也是不同的.       BFS是用一个num数组,num[x] ...

  9. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

随机推荐

  1. 如何在SAE搭建属于自己的黑盒xss安全测试平台

    Author:雪碧 http://weibo.com/520613815 此篇文章技术含量不高,大牛不喜勿喷,Thx!写这篇文章主要是为了各位小伙伴在SAE搭建XSSING平台的时候少走点弯路(同志们 ...

  2. 很不错的关于依赖注入和AOP的系列文章

    http://blog.csdn.net/tittop/article/details/6716033

  3. MySQL Error Code文档手册---摘自MySQL官方网站

    This chapter lists the errors that may appear when you call MySQL from any host language. The first ...

  4. 2-6 R语言基础 缺失值

    #缺失值 Missing Value > #NaN不可识别NA> x <- c(1,NA,2,NA,3) > is.na(x)[1] FALSE TRUE FALSE TRUE ...

  5. CHECKEDLISTBOX用法总结

    C# CHECKEDLISTBOX用法总结   一般认为:foreach (object obj in checkedListBox1.SelectedItems)即可遍历选中的值. 其实这里遍历的只 ...

  6. 【转】C#中对IDisposable接口的理解

    IDisposable接口定义:定义一种释放分配的资源的方法. .NET 平台在内存管理方面提供了GC(Garbage Collection),负责自动释放托管资源和内存回收的工作,但它无法对非托管资 ...

  7. Vue 下拉列表 组件模板

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. day50

    JS基础 一.JS语言介绍 1.概念 浏览器脚本语言 可以编写运行在浏览器上的代码程序 属于解释性.弱语言类型编程语言 2.组成 ES语法:ECMAScript.主要版本ES5和ES6 DOM:文档对 ...

  9. DB2创建视图view

    create view v_table1(col1,col2,col3...)--视图名(字段一,字段二,字段三...) as --后跟查询语句 select col1,col2,col3... fr ...

  10. pv,uv的意义

    PV(page view),即页面浏览量,或点击量;通常是衡量一个网络新闻频道或网站甚至一条网络新闻的主要指标. 高手对pv的解释是,一个访问者在24小时(0点到24点)内到底看了你网站几个页面.这里 ...