FWT大杂烩。跟着模拟做很多次FWT即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N (1<<17)
#define P 1000000007
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,ab[N],c[N],de[N],f[N];
void OR(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
a[k]=x;if (op==) a[k+(i>>)]=(y+x)%P;else a[k+(i>>)]=(y-x+P)%P;
}
}
void AND(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
if (op==) a[k]=(x+y)%P;else a[k]=(x-y+P)%P;a[k+(i>>)]=y;
}
}
void XOR(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
if (op) a[k]=1ll*a[k]*%P,a[k+(i>>)]=1ll*a[k+(i>>)]*%P;
}
}
void FWT(int *a,int *b,int n,int op)
{
if (op==) OR(a,n,),OR(b,n,);
else if (op==) AND(a,n,),AND(b,n,);
else XOR(a,n,),XOR(b,n,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
if (op==) OR(a,n,),OR(b,n,);
else if (op==) AND(a,n,),AND(b,n,);
else XOR(a,n,),XOR(b,n,);
}
int main()
{
n=read();
while (n--) c[read()]++;
memcpy(de,c,sizeof(de));
FWT(de,c,N,);
for (int i=;i<N;i++)
{
for (int j=i;j;j=j-&i)
ab[i]=(ab[i]+1ll*c[j]*c[i^j]%P)%P;
ab[i]=(ab[i]+1ll*c[i]*c[])%P;
}
f[]=,f[]=;for (int i=;i<N;i++) f[i]=(f[i-]+f[i-])%P;
for (int i=;i<N;i++) ab[i]=1ll*ab[i]*f[i]%P,c[i]=1ll*c[i]*f[i]%P,de[i]=1ll*de[i]*f[i]%P;
FWT(ab,de,N,);FWT(ab,c,N,);
int ans=;for (int i=;i<;i++) ans=(ans+ab[<<i])%P;
cout<<ans;
return ;
}

Codeforces914G Sum the Fibonacci(FWT)的更多相关文章

  1. CF914G Sum the Fibonacci(FWT,FST)

    CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...

  2. 「WC2018」州区划分(FWT)

    「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. ...

  3. 【CF850E】Random Elections(FWT)

    [CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...

  4. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  5. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  6. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  7. 【UOJ#310】【UNR#2】黎明前的巧克力(FWT)

    [UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其 ...

  8. 关于快速沃尔什变换(FWT)的一些个人理解

    定义 FWT是一种快速完成集合卷积运算的算法. 它可以用于求解类似 $C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$ 的问题. 其中⊗代表位运算中的|,&,^的其中一种. ...

  9. Codeforces663E Binary Table(FWT)

    题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...

随机推荐

  1. 服务器端数据合法性验证:签名sign和口令token原理

    有时候,你也许会想: 我写的接口,那别人要是知道url,并且知道其需要的数据结构和逻辑,那不是都可以访问了? 甚至是,客户点传递过来的数据,是不是被恶意修改了? 这时,我们可能需要“验证”一下.比如: ...

  2. Linux中一个网卡含有多个IP,将从IP升级为主IP的方法

    今天在查看虚拟机的时候,发现某一网卡含有多个IP地址: eno16777736: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu qdisc pfifo_fas ...

  3. Android病毒家族及行为(一)

    1病毒名称:a.remote.GingerMaste中文名:病毒家族:GingerMast病毒类别:远程控制恶意行为:获取root权限,同时连接远端服务器,在其指令控制下静默下载其它恶意软件,给用户手 ...

  4. 20155325 Exp5 MSF基础应用

    目录 实验内容 遇到的问题 基础问题问答 老师!!!我实验三的C代码已经删除了,请求评分~~~ 实验内容 1.Windows服务渗透攻击--MS08-067 系统 虚拟机 参考博客 Windows X ...

  5. AngularJS+bootstrap-switch 实现开关控件

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. 备忘:BLOCK CORRUPTION IN SYSTEM DATAFILE

    http://www.onlinedbasupport.com/2010/12/10/block-corruption-in-system-datafile/

  7. [2016北京集训试题15]cot-[分块]

    Description Solution 如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积. 差分.add[i][j]和dev[i] ...

  8. 【Android UI设计与开发】第03期:引导界面(三)仿微信引导界面以及动画效果

    基于前两篇比较简单的实例做铺垫之后,这一篇我们来实现一个稍微复杂一点的引导界面的效果,当然也只是稍微复杂了一点,对于会的人来说当然还是so easy!正所谓会者不难,难者不会,大概说的就是这个意思了吧 ...

  9. 【转】Spring Boot干货系列:(一)优雅的入门篇

    转自Spring Boot干货系列:(一)优雅的入门篇 前言 Spring一直是很火的一个开源框架,在过去的一段时间里,Spring Boot在社区中热度一直很高,所以决定花时间来了解和学习,为自己做 ...

  10. [转载]windows下PHP + Nginx curl访问本地地址超时卡死问题的解决方案

    原因: windows 下 nginx+php环境,不支持并发. 解决方案: 1.在配置nginx vhost时,需要同时运行的网站设置不同的fastcgi_pass的端口号 server { ser ...